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Abstract 
This project developed flexible, software-configurable network interfaces and protocol 
processing engines. Bit-rate adaptability and protocol reconfigurability were realized by 
combining a custom ASIC, a Physical Layer Processor and a Cell/Packet Engine in a 
card-level Universal Network Access Engine (UNAE) that is reconfigured through 
software commands. Mezzanine cards adapt to various physical media. Protocol- and 
format-processing engines were developed and tested for OC-48 Packet over SONET 
(POS), Gigabit Ethernet, HD video and SD video, running on the same HW cards, with 
only SW reconfiguration.  In combination, UNAE cards can select from a library of 
protocols and translate between them at several different data rates. The system 
communicates directly with other attached network elements such as to routers, using 
PPP/LCP for POS and auto negotiation for Gigabit Ethernet.  The system demonstrated 
transport of uncompressed HD video (SMPTE 292) data at 1.5Gbps over an IP wide area 
network from Seattle to Washington DC over Internet2. A gateway interface was created 
between an OC-48 POS network and an Optical Label Switched Router (OLSR). IP 
packet header information was used to generate labels that instruct the OLSR how to 
switch each packet. The UNAS receives optical packets from the Optical Label Switched 
Network and recovers the data. The concept, architecture and engine elements have been 
proven in a series of system demonstrations that show the power and flexibility of the 
approach. 

goodelle
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1 Summary 
Much effort has been focused on building a Next Generation Internet infrastructure - to 
provide millions of users with gigabits per second bandwidth on demand, increased 
network automation and improved security, all at greatly reduced cost to the user. Prior to 
the Universal Network Access System (UNAS) project, much effort had been focused at 
addressing very high bandwidth network pathways and switching. Less progress had been 
made on technologies needed to provide transparent, service-independent, high 
bandwidth network access. This project has focused on providing flexible, software 
configurable, network interface adaptors which will be useful for a wide variety of 
applications. 

The strategy was to pursue an approach combining elements supporting bit-rate 
adaptability and protocol reconfigurability into a system architecture on which to build a 
variety of network adaptors and interfaces. Three key functional blocks to be developed 
included a bit-rate agile DeMux/Mux for adapting to a variety of network speeds and 
signal sources, a Physical Layer Protocol Engine and a Cell/Packet Engine. The Physical 
Layer Protocol Engine provides a flexible means of handling physical layer and transport 
functions including termination of physical links, scrambling/descrambling, bit and Byte 
alignment and framing and recovery of packetized or formatted data. The Cell/Packet 
Engine does processing at the packet or cell level, dealing with verifying integrity of data 
payloads, timing synchronization between user and network clock domains, and 
processing of user data. This is not only a flexible key to interfacing between user data 
and the network, but it may provide powerful support for determining quality of service. 

The proposed elements were combined into an architecture; and a series of card-level 
Universal Network Access Engines (UNAEs) were developed. These share common 
hardware and are reconfigured through software commands and an embedded operating 
system. In meeting the objectives above, the requirement to adapt to various physical 
media attachments is realized through a small set of mezzanine cards that each attach to a 
motherboard to form the UNAE element. 

These engines, when integrated into a simple multicard system, have the following 
benefits:  

They provide the ability to rapidly and inexpensively deploy edge elements for a variety 
of networks using a base set of hardware with software configurability (taking only a few 
seconds to configure). 

Engines provide flexibility in providing scalable network access for a variety of different 
services and data sources. This was demonstrated by providing interfaces from both 
standard definition (SD) and high definition (HD) digital video sources and two common 
types of packet based, high bandwidth transport networks (Gigabit Ethernet and OC-48 
Packet over SONET). 

They lay the groundwork for the development and testing of new protocols. A simple 
example of this is the label-filtering protocol that was co-developed with University of 
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California at Davis, where a custom label was created from IP header information and 
sent in a reduced bit rate stream to an optical label processor to generate optical 
subcarrier multiplexed labels for an all-optical packet routing switch. There is a much 
richer set of custom protocols that these engines will allow - for applications focused on 
security, simplicity, or bit efficiency – that were not addressed in this program. 

This program undertook to research architectures and methodologies needed to provide a 
highly flexible approach to realizing network access and payload processing elements. 
An architecture was developed that would accommodate common elements of protocols 
in significant commercial use, yet would provide the flexibility to allow development and 
testing of customized and proprietary protocols. A combination of dedicated integrated 
circuits (ASICs) and high performance programmable logic were chosen to comprise the 
engines. Design and development tools were surveyed and selected. The program became 
a testing ground for balancing the ease of use of tools with higher levels of abstraction 
and design automation, against the high performance demanded of the engine elements 
for high bandwidth protocol processing. Protocol Compiler and VERA from Synopsys 
were selected for higher level logic design and verification tools, respectively.  Verilog 
took longer than Protocol Compiler for initial design; but the design approach allowed 
more direct control of performance, showing that for these very high performance 
designs, the Verilog is superior to Protocol Compiler. 

The approach of using a mezzanine board for physical media attachment and the 
serialization/deserialization and clocking functions was very powerful. The key element 
of the mezzanine was to be the bit-rate adaptive DeMux/Mux (BRAD), which would 
provide bit-rate agile transmitter and receiver clock circuits from 150Mbps to 3 Gbps, 
burst mode capture, and parallel word widths on the deserialized side. A Complementary 
Metal-Oxide (CMOS) feasibility study based on available processes and models 
suggested that the risk of using CMOS would be too high. A BRAD design based on the 
IBM 5HP SiGe process was developed and simulated. This design was discontinued due 
to resource issues. In its place a commercial clock and data recovery and DeMux/Mux 
chip was successfully designed into the mezzanine. All testing was done with the 
commercial chip. Without the BRAD, video interface mezzanines also needed custom 
chips to handle the video signals. This led to successful implementations that required 
separate optical network-, SD video- and HD video-mezzanines.  

Interfaces and protocol- or format-processing engines were successfully realized and 
tested for OC-48 Packet over SONET (POS), Gigabit Ethernet, HD video and SD video. 
That these can all run on the same card with only a few-second SW configuration show 
the strength of the architecture and approach using programmable engine cards with 
physical layer mezzanines. In combination, these cards also showed the ability to 
accommodate generally formatted user data, the ability to quickly select and transmit 
from a library of protocols, the ability to function at several different data rates (bit-rate 
adaptability) and the ability to translate between different formats or protocols including 
SONET to/from Gigibit Ethernet, video mapped to/extracted from SONET or Gb 
Ethernet. Packet and network diagnostics were also demonstrated, through reporting of 
SONET alarms and link status indications but also through packet and payload 
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diagnostics within processing elements in the UNAE itself. 

The system was used to communicate directly with other attached network elements over 
a wide area network, talk to routers through PPP/LCP for Packet over SONET and auto 
negotiate for Gigabit Ethernet. The packet filtering and negotiation for this was handled 
autonomously on the UNAE card under control of its embedded operating system.  The 
system fully negotiates for link connection with commercial test equipment such as IXIA 
and Adtech packet testers. 

The ability to set up links with other network elements and the UNAE multiprotocol 
mapping were combined to demonstrate for the first time the transport of uncompressed 
HD video (SMPTE 292) data at 1.5Gbps over a wide area IP packet based network. This 
was demonstrated on several occasions from Seattle to Denver and to Washington DC 
over the Internet2 backbone, with diagnostics for dropped and reordered packets obtained 
for up to 18 hours at a time. Besides showing for the first time that this could be done, 
this provided unprecedented validation that routers on the network could handle 
extremely large, single flows of real time traffic such as these. 

A final example of protocol flexible performance using the UNAS is the collaborative 
development with University of California at Davis of a gateway interface between an 
OC-48 POS network and the Client Interface for an Optical Label Switched Router 
(OLSR). IP packets were extracted from the OC-48 stream, the packet header information 
was used to generate a label that instructs the OLSR how to switch that packet, and the 
label and original packet data are forwarded to a optical label generation module. 
Customization of the stream such as encapsulation using HDLC for data scrambling and 
appending a preamble are also programmed into the data processing in the UNAE path. 
The UNAS also receives optical data from the Optical Label Switched Network and 
recovers the packets and data. This is another unprecedented demonstration, that of a 
completely custom and extendable interface between a conventional POS network and an 
Optical Label Switched Network. The architecture of the UNAE can be extended with the 
OLSR to other advanced developments such as generation of jumbo packets in 
concatenated streams. 

The program did have some setbacks, including the inability to complete the BRAD 
within the program resources. This chip would have been one of the first burst mode 
receivers to run at 2.5Gbps. This would have eliminated the need for the cumbersome 
preambles in the OLSR client interface. The BRAD would allow a single mezzanine 
board to be used for all the protocols and formats addressed in the program, using a 
multiplex selector between a fiber and coax (video) inputs.  

One of the biggest design challenges was to accommodate multiple clocks (not multiples 
of each other) such as SONET and Gigabit Ethernet. Having the BRAD would have 
addressed this too. However, in the implementation without the BRAD, the performance 
was limited by the components used. Failure for the vendor to successfully build 
oscillators within spec after our mezzanine redesign limited use of the system to run in 
“loop-time” (deriving the transmit clock from the received clock) rather than “local-time, 
where an on-board oscillator provides it. This did not impact any of the demonstrations of 
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features but limits the applications unless a suitable oscillator is added. 

Use of Protocol Compiler tool was considered to have added some time to the full design 
task, since the performance demanded of the programmable logic by this program 
required careful redesign of each module to assure consistent performance in the 
integrated designs. 

The intent of the research has been successfully carried out, however. A multirate and 
multiprotocol system, based on software configurable, hardware accelerated processing 
engines has provided a series of system demonstrations that show the power and 
flexibility of the concept, architecture and system approach. 
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2 Introduction 

2.1 Purpose 
Building the Next Generation Internet (NGI) capable of providing millions of users with 
gigabits-per-second bandwidth on demand has required breakthroughs in network access, 
transport, multiplexing and switching. Prior to this project, progress in high speed time 
division multiplexing, dense wavelength division multiplexing, and optical switching 
technologies had been addressing the needs for high bandwidth pathways and switching. 
Much less progress had been made, however, in access technologies to provide the 
network adapters required to achieve transparent, service-independent network access. 
This research has been directed towards realizing this network access adapter function. 

Figure 1 shows several methods of connecting into the NGI core network through 
terminal adapters and edge devices. Commercial and DoD users who need to transport a 
variety of data types, including archived material as well as realtime data from satellites, 
motion imagery and sensor data, must first find a means to map their asynchronous, often 

NGI
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*

*
*

*

*
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* *
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Figure 1 Use of Universal Network Access Engine in NGI Applications 

proprietary I/O signals on to a standard network interface. In the process, they may need 
to wade through numerous protocol layers and mappings, e.g. IP to ATM adaptation layer 
to ATM physical layer to SONET.  It is often difficult to build applications to take 
advantage of current high speed network testbeds because researchers have no means of 
connecting high speed signals from devices such as servers, supercomputers, and motion 
image cameras into the SONET network access ports. The development of specialized 
access devices is often a time consuming and expensive proposition. Furthermore, even if 
a specialized terminal adapter exists for a specific data source, it was still considered very 
difficult to modify protocols to perform network testing or to optimize protocols for new 
switching and multiplexing technologies. It was partly to address this last issue that the 
Optical Data Service Interconnect (ODSI) Coalition and Optical Internetworking Forum 
(OIF) were established in 2000 to develop a powerful set of User to Network and 
Network to Network Interfaces and protocols to provide the signaling, automation and 
testing for connected dissimilar networks on a large scale. 
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Achieving bit-rate adaptability and protocol reconfigurability formed the original focus of 
this research. The concept of a Universal Network Access Engine in theory affords 
several advantages: 

Rapid capability to deploy interoperable networks and build new applications. In defense 
applications, adaptability could play a significant role in facilitating the deployment and 
adaptation of battlespace networks. For example, the need to integrate satellite, archive, 
sensor and other information to achieve information superiority may require an enormous 
amount of “glue” infrastructure such as network adapters, protocol converters, and format 
converters, each accompanied by logistic and inventory support demands. Achieving 
network connectivity for new types of sensors and interoperability with existing 
international standards can require development or procurement of new special purpose 
sensor adapters and protocol converters. Access engines with dynamic software 
configurability can reduce the time required to build or upgrade information networks in 
the field. An access engine can be reused and reconfigured as a network building block to 
form network interface cards, protocol transcoders, device and service adapters, and 
perhaps be extended to multiplexers, concentrators, edge switches, etc., for different data 
types and networks. 

Operation with streamlined protocols. The programmable engine, in conjunction with 
multiwavelength optical switching, might enable the DoD to take advantage of NGI 
technology and clear optical channel access by providing flexibility in fine tuning both 
the bit rates and protocols for a given application. Sufficient bit rate flexibility, for 
example, would enable users to bypass the ATM layer by matching network access rates 
to sensor data rates. 

Reconfiguration of physical layer protocol under software control. This can be used to 
provide enhanced network security by programming custom protocols which can be 
periodically or randomly altered. 

Flexibility in providing scalable network access for a variety of different services and 
data sources. The same engine can be reused to provide a SMPTE 259 digital video 
interface, or SMPTE 292M HDTV interface, for example, or could even be 
reprogrammed to extend a protocol to support transport of a data type for which no 
transmission protocol has yet been standardized. As this research started there was DoD 
interest in utilizing high resolution framing sensors, e.g. 1080 line 60 fps progressive 
scanned HDTV cameras and other high data rate sensors whose outputs exceed the data 
rate of existing standards such as SMPTE 292M. 

Development and testing of new protocols. While SONET, ATM and IP perform many 
necessary functions (including providing a hierarchy of standardized access rates, per-
link error detection and handling, service mapping and bit rate decoupling, statistical 
multiplexing, resource allocation, switching, routing and the ability to provide 
decentralized network management) they also perform many overlapping functions 
which may not be optimal for optical networks. For example, the use of larger or variable 
size cells with unique IP-like addressing might allow the merging of ATM and IP into a 
single more streamlined layer. Larger cell sizes might be better suited to optical switching 
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technologies. The programmable access engine will enable network architects to try out 
modified or new protocols such as these. 

Network monitoring and Quality of Service testing. Signal generation and monitoring 
functions can be embedded in the access engine to measure network performance. For 
example, time stamps can be inserted into packets or cells to monitor network jitter, and 
reference data signals can be generated to assess end-to-end performance at the 
application level. 

All optical switching fabrics have been touted as providing scalable, reliable transport, 
especially with the rapid development of DWDM and the prospect of wavelength 
provisioning in the fabric. Optical switching fabrics have usually been envisioned as 
circuit switches; but there is value in all optical fabrics that can switch at the packet level 
in real time. Proposed switches such as optical label switched routers (OLSR) when run 
in a packet switching mode don’t always interoperate will with existing packet networks 
which are in extensive and growing use today. The system developed in the current 
program was seen as a unique vehicle to experiment with interfacing contemporary 
networks such as IP packet over SONET to prototype future all optical, OLSR fabrics. 

Scope of Project 

Tektronix has contributed to the NGI program by researching and developing a 
“Universal Network Access Engine” to provide research in network access technology 
for flexibly interconnecting a range of broadband information sources, appliances and 
local area networks. The scope of this program is to research methods for flexibly 
interconnecting a wide range of broadband information sources and local area networks 
over the Next Generation Internet (NGI). The primary objective has been to develop the 
architecture, components, and a prototype system to demonstrate a Universal Network 
Access Engine using a bit-rate flexible modular optical interface, a reconfigurable 
Physical Layer Protocol Engine, and a reconfigurable Cell/Packet Engine.  The engine 
architecture is intended to enable reconfigurable remote network monitoring and network 
edge devices, which can flexibly interconnect broadband information sources and 
appliances over the NGI. The technology has been developed to provide groundwork for 
rapidly deployable and reconfigurable networks, interconnection of dissimilar network 
types, development and testing of new protocols, packet label or tag generation, network 
monitoring and quality of service (QoS) testing, and is intended to also be extensible to 
new approaches to data security. 

The following elements were addressed in the work and in the following report:  
− Universal Network Access System (UNAS) and ASIC/programmable logic 

Architecture were developed and simulated. 
− Development of NGI components including system, board level designs, ASIC and 

FPGA designs, including software development to meet the requirements.  Support of 
continuous data processing associated with protocols at 2.5Gbps and above demands 
that the designs run in real time at 78-155 MHz at whatever processing depth is 
required. 
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− Development of a UNAS evaluation and demonstration environment: This refers to 
internal lab-level demonstrations. Additional purchases of a router with 2.5Gbps ports 
and network signal generation and measurement equipment were made by Tektronix 
to support program activities. 

− Integration of UNAS to provide operational verification and UNAS evaluation and 
network demonstrations. A first time network demonstration of HDTV transport over 
an IP based wide area network was performed. 

− Development of a programmable gateway interface between an all optical packet 
switch and contemporary SONET network. 

These elements encompass the work statement for the contract. Technology was 
developed to enable operation from 150 Mbps to 3 Gbps. An ASIC architecture was 
developed and a design partially completed to address autonomous bit rate agile clock 
and data recovery over this performance range. The program has resulted in 
demonstration and delivery of a prototype Universal Network Access System (UNAS). 

2.2 Technology Approach 
The Universal Network Access System consists of a platform, one or more board level 
Universal Network Access Engines and controlling software.  The Universal Network 
Access Engine concept relies on the development and interdependence of three unique 
building blocks: 1) the Bit-rate Adaptive Demux/Mux, 2) the physical layer protocol 
engine, and 3) the Cell/Packet Engine. Network interface cards, terminal adapters, service 
multiplexers, concentrators and other network edge devices may conceptually be 
constructed using Access Engines.  

The Bit-rate Adaptive Demux/Mux (BRAD) is intended primarily for fiber optics 
network applications. On the receive side, the BRAD accepts a serial data input stream, 
recovers clock and data, and demultiplexes it. On the transmit side, the BRAD accepts 
data from a parallel interface and multiplexes it into a serial output stream. The BRAD 
generates clocks for serial and parallel data outputs, and clocks the parallel input. 

The receiver and transmitter operate independently from each other at any frequency 
from 150 MHz to 3 GHz.  Multiplex and de-multiplex ratios (more recently termed 
serialization and deserialization, respectively) are independently programmable to 
multiple bit widths to better accommodate the range of clock frequencies. There is 
facility to estimate data rate of received signals of unknown protocol for setting the initial 
frequency of the clock recovery circuit. The clock and data recovery in the receiver will 
recover burst data of a known rate without losing any initial data while locking in. 

The BRAD concept provides features not generally available in commercial transceiver 
components for optical communications. These include a burst mode which allows the 
receiver to instantly start acquiring data, without losing a single bit, when a new 
transmission starts, using a known protocol. Most receivers have phase locked loop 
(PLL) clock recovery circuits, which need a lock-in period before data can be acquired. 
Bit rate agile transmitter and receiver clock circuits may be programmed to any serial rate 
from 150 Mb/s to 3 Gb/s. Programmable parallel word widths of 8, 10, 16, 20 and 32 in 

 8 



 

receiver and transmitter parallel-to-serial and serial-to-parallel converters better 
accommodate multiple protocols. Finally, a receiver transition counter helps estimate the 
bit rate of a received data of unknown protocol. 

The BRAD can be seen to combine the functions of burst mode receiver, clock and data 
recovery (CDR) and serialization/deserialization (SERDES) in a single circuit. Additional 
information from a transition counter in the BRAD is required for the system to recognize 
an unknown bit rate and is a key step in recognizing unknown protocols. If a 
commercially available CDR and SERDES are used in place of the BRAD, some of these 
functions may be lost. 

The physical layer protocol engine (PLPE) is tasked to provide compliant protocol 
processing for communications applications through adaptive reconfiguration.  

The PLPE takes advantage of the large degree of commonality among many physical 
layers to achieve protocol adaptability. For example, most protocols tend to have some 
type of frame structure for header and payload composition, usually with byte or word 
quantization. They also generally incorporate parity and/or Cyclic Redundancy Code 
(CRC) checks, and some form of encoding or scrambling. Often, overhead insertion and 
extraction is required. Some protocols require calculations over a frame which impact the 
headers of the subsequent frame. Of the commonly used standard protocols, 
SONET/SDH is one of the most processing intensive. Gigabit-per-second processing 
demands extensive levels of pipelining, signal and clock routing resources, and 
synchronized control over those resources.  

The Cell/Packet Engine, in conjunction with the physical layer protocol engine is 
designed for flexibly processing cell or packet layer protocols required for statistical 
multiplexing, routing and switching. The proposed engine will be programmable to 
accommodate variable length cells or packets. It will also be capable of processing header 
structures to support time stamps, or filter on IP source and destination addresses for 
example. In addition, since optical switching technologies may require novel techniques 
for extracting headers from cells, the engine must flexibly accommodate a wide range of 
structures, even at the bit level, for embedding header information within the cell. It is 
this engine that provides for service-independent access by mapping asynchronous user 
data streams onto fixed rate network pipes. In addition to helping map cells to and from 
the physical layer payload, this engine is responsible for cell buffering to accommodate 
network jitter, header processing and clock recovery for data streams. The output of the 
engine is a general purpose cell/packet level data interface which can be programmed, for 
example, to conform to the ATM UTOPIA interface and its extensions such as SATURN 
POS/PHY or SFI-3. 

The Universal Network Access Engine (UNAE) is a card consisting of the Bit-rate 
Adaptive Demux/Mux, physical layer protocol engine, and Cell/Packet Engine 
programmable elements, an embedded controller, FLASH memory, RAM, and auxiliary 
components. The Universal Network Access System (UNAS) is comprised of one or 
more Access Engines, a card cage or platform, and software consisting of an embedded 
real time OS, drivers, user interface, configuration libraries, and modules for accessing, 
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controlling, reconfiguring, managing, and monitoring the system. The flexibility and 
modularity of this system enables the configuration of a variety of network access 
devices, including network interface cards, terminal adapters, protocol transformers, 
service multiplexers and concentrators. Figure 2 illustrates an access system with 
multiple engines configured as an access concentrator. 
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Figure 2  Use of Universal Network Access Engine in an Access ConcentratorPlan 

 

This report covers the essential details of the investigation undertaken. Section 0 covers 
the system requirements and assumptions for this study. This is followed by discussion of 
methodology used to address the requirements, including selection of tools for hardware 
design and verification, selection of programmable logic elements, and identification of 
initial performance milestones. Development of the hardware and software architecture is 
included in this discussion. 

Section 4 continues by addressing details of system development, starting with software 
development which includes system control software, the VxWorks embedded real time 
operating system (RTOS), communication between VxWorks and the NT system, graphic 
user interface (GUI) and diagnostic information available to the user through the GUI.  

The key to flexibility for the UNAS’ physical medium interface is the interchangeable 
mezzanine cards which are described next, followed by the universal network access 
engine (UNAE) which is the base card containing most of the protocol processing blocks. 
The special purpose mezzanine interfaces for video input and output are included here 
also.  

The bit rate adaptive demux/mux (or BRAD) is described; and results of BRAD 
feasibility studies in CMOS and silicon-germanium technologies and subsequent 
development are covered, along with criteria for selection of a commercial chip with 
aspects of the BRAD functionality. Status of the BRAD development, which was not 
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completed due to program resource limitations are summarized. 

The functional elements that make up the UNAE, the development and testing of which 
made up much of the work of this project, are described in detail. The blocks are 
generally assigned to handle one or more layers of the OSI protocol stack so that as the 
signal transits from the optical interface toward the back plane processing progresses 
from physical, to transport, to network layer and so on for any protocol. This is the how 
the description of each protocol design is organized. 

The board level UNAE elements were designed to work with a high performance, 
compact-PCI platform. Rational for this choice and elements and performance 
capabilities of this platform are reviewed. 

The focus of the UNAS effort was to create methodologies for processing different 
protocols without physically reconfiguring the system hardware. Development efforts for 
realizing, verifying and implementing hardware to process several protocols is covered. 
These include SONET, packet over SONET (POS), gigabit Ethernet, and two formats of 
uncompressed digital video commonly used in content creation and post production 
work. These serial digital video formats have been used extensively in DoD and hold 
promise when transport issues are resolved. 

Also described is the development of an electrical interface and a custom protocol to 
allow the UNAS to act as a gateway between an OC-48 POS network and an all-optical, 
label switched router.  IP packets from a POS network are extracted, the resulting packets 
encapsulated using HDLC, and custom labels are generated and passed to the all-optical 
switch and client interface developed by UC Davis. 

Laboratory and field tests of the assembled functional blocks that comprise the Universal 
Network Access System are reviewed in section 4.3. Results of testing with commercial 
network and packet testers, routers and between UNAS-based nodes on wide area 
networks are included. These cover transport performance for difficult data such as 
SMPTE292 uncompressed HDTV and system and network performance such as jitter and 
dropped or reordered packets. Field testing included primarily packet over SONET 
testing, including the first demonstrations of a single 1.5 Gbps stream of video with 
embedded audio, transported across the US in a POS network with no dropped data over 
several hours. 

Results of testing the label generation interface with the optical label switched router are 
also included. 

Section 5.2 provides conclusions regarding system performance versus original 
expectations, suitability of architecture to meet the requirements, performance of design 
tools and methodologies to meet design challenges. 
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3 Methodology 

3.1 Development of a System Requirements Document 
Development of a system requirements specification started with creating of a User 
Requirements Document. The user requirements were based on the original proposal and 
the NGI UNAS Statement of Work for PR No. C-8-2586 dated 20 July, 1998; and are 
summarized below.  The System Requirements Document was based on the following 
considerations and assumptions. 

The Universal Network Access System (UNAS) will be comprised of a high speed 
protocol-independent front-end ASIC for clock and data recovery, followed by several 
FPGA’s to do protocol-dependent framing, overhead extraction/insertion, payload 
extraction/insertion,  error detection, and formatting for transmission across a common 
interface. System operation will be controlled by software which can provide system 
control and real time updates of network and traffic flow status. 

The technology developed here will be compatible with rapidly deployable and 
reconfigurable networks, development and testing of new protocols, network monitoring 
and quality of service (QoS) testing. 

The system will include the capability to provide synchronized time stamps sufficient to 
implement selected QoS monitoring and measurement capabilities. 

The system will support inserting or accepting cells or packets directly to or from the 
main data path. 

3.1.1 Platform 
A platform will provide power and control for modular network interface and access 
cards. It may be either bench-top or rack mountable. A local or remote monitor and 
control interface will be provided. A hard drive and the ability to connect CD ROM drive 
and download CD-ROM data to hard drive will be provided. A standard network 
interface (such as Ethernet) is desirable and necessary for a remote user interface. 

3.1.2 System Interfaces 
The serial network interfaces implemented in the UNAS will comply with requirements 
of the selected protocols listed in Table 1, Table 1 UNAS Serial I/O Formats, with the 
appropriate interface board configuration and logic programming. 

Each physical layer connection must provide the means to physically reconfigure the 
external serial connection to the system. This connection includes physical , ediua 
attachment connectors and conditioning elements specific to an interface port for an 
optical network or a source adhering to a video data format in Table 1. The port interface 
will support 150 Mbps - 3 Gbps. 
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3.1.3 Protocols 
Only point-point, serial self-clocked, full duplex protocols transmitted at bit rates from 
155 Mbps – 3 Gbps are to be accommodated. This excludes collision detection and 
handling, arbitrated loop and bus topologies. Only long-wavelength optical versions of 
serial protocols are to be implemented. The protocols are summarized in Table 1. No 
architectural decisions will be made that will disallow support of additional protocols and 
the system will retain the ability to support other current or future serial protocols.  
Standard specifications and RFCs will be used as guidelines for implementation.  

Table 1 UNAS Serial I/O Formats 

 

Protocol Implement1 Support2 Comments 

ATM over SONET 
OC-3c, OC-12c, OC-48c • 

 

  

IP over SONET (PPP / HDLC) 
OC-3c, OC-12c, OC-48c •  Packet over SONET 

Gigabit Ethernet  
(IEEE 802.3ae) •  Optical fiber transport

SMPTE 259 and SMPTE 292  • 
Serial video/data on 
optical fiber or coax 

Encapsulated data over SONET  • 
No current 
application 

ATM (unframed)  • 
No current 
application 

Future point to point protocols3 
compatible with architecture  • 

Subject to available 
specifications and 
standards 

1For protocols denoted for implementation, the current plan is to include the protocol 
as part of the UNAS program. 
2UNAS architecture will allow processing of the protocols denoted for support through 
hardware and software adaptations.  
3Extension to additional, future protocols requires that specifications are well defined, 
implementation is compatible with UNAE architecture, and protocol may be tested 
using available tools. 

A copy of this table was submitted to the Government and approved with comments 
which were incorporated in the version shown. Based on discussions with Mari Maeda, 
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DARPA/ITO SMPTE 292 was implemented with the tradeoff that ATM over SONET 
would be supported, and implemented only if schedule and resources were available. 

Electrical versions of certain data formats such as SMPTE 259 video may be 
accommodated by configuration of the physical layer connection. 

WDM support can be provided only with external wavelength-selectable WDM access 
elements. In this case one WDM channel can be supported at a time by each UNAE card. 

SONET features supported:  The system will accept normal SONET input from OC-3 to 
OC-48 data rates, and will behave as operational equipment at the SONET level. Any 
SONET function implemented will be according to Bellcore GR-253 SONET 
specifications. Alarms, secondary channel, and policing functions will be implemented 
only as needed. 

ATM features supported:  Performs cell delineation and HEC correction, payload 
descrambling, and filters to drop/divert specified ATM cells. Although originally desired, 
the ATM design was not implemented. The architecture supports ATM. 

PPP and IP support for Packet over SONET:  HDLC and PPP processing will be 
implemented. Recommended practices will be followed for high bit rate implementations. 
PPP in HDLC framing over SONET will be supported per RFCs 1619 and 1662. PPP 
parameters will be negotiated as per RFC 1661 using LCP packets directed to the host 
processor. 

Gigabit Ethernet features supported:  Gigabit Ethernet following 802.3ae, full duplex 
optical transport over fiber, will be implemented. 

Video features supported: If implemented, video data arriving in standard serial format 
such as SDI or SDTI will be segmented and packetized into ATM cells or IP packets for 
transport over SONET. SDI video received in ATM/SONET or IP/SONET will be 
reassembled and retimed for correct playout. Timing information may be recovered 
sufficiently to help diagnose errors in reassembling for display. 

As the program unfolded some changes were made to Table 1. ATM on OC-48 SONET 
was planned as the first full protocol developed. Since this was one of the most 
computationally complex protocols planned, development and real time realization of this 
protocol was to constitute a feasibility evaluation for the proposed programmable 
network access approach (UNAE). However, a specific request from Mari Maeda, 
DARPA ITO, was to demonstrate transport of uncompressed SMPTE292 high definition 
video in IP packets over OC-48 SONET. Since this was considered as computationally 
difficult as the ATM transport approach, it was adopted as the feasibility test for the 
UNAE concept. Although a first implementation of the ATM test bench was complete, 
the ATM design was never completed. Nor were the multirate SONET at OC-3 and OC-
12. Only OC-48 SONET (the most difficult by far) was implemented. 

3.1.3.1 System Measurements and Status Indications 

For each protocol to be implemented, parameters of interest for determining the state of 
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the link and of the network access point will be presented at a graphical user interface. 
These include parameters and indicators such as packets sent/received, Bytes received, 
frame check sequence errors, and CRC errors for IP packets; and loss of signal, loss of 
frame, and B1, B2 errors for SONET. 

Future protocols: For each protocol supported by the UNAS, measurements will be 
displayed for that protocol, based on protocol definition and intended use. 

3.1.3.2 Quality of Service 

The system will be software reconfigurable so that quality of service (QoS) 
measurements can be done on selected protocols without reconfiguring system hardware, 
except to adapt to different physical layer connections at the serial network interface. The 
system will support filtering and extracting packets or cells for QoS measurements using 
filtering criteria, which may be stored or provided by an external source.  

3.1.3.3 Additional Functional Cards 

The architecture will allow the user to implement custom functions on separate circuit 
boards via the platform's bus system. 

3.1.3.4 Network Ports 

The UNAS will have a means to adapt to different network-specific fiber optic physical 
layer connectors in a modular manner. 

The UNAS will receive and transmit serial data at bit rates in the range 150 Mbps – 3 
Gbps.  

3.1.3.5 Software Requirements 

The UNAS software will allow the user to select the various parameters of a given signal.  
These include the physical layer, network protocol, transport layer, data encapsulation, 
and scrambling/no scrambling.  Status information, such as signal loss, loss of frame, 
errors, alarms, etc., will be presented to the user through software. 

The correct operating state may internally initialized or be established using 
communication over a user interface between the system host and remote host through 
Ethernet. 

System operation will provide for protocol negotiation.  For example, PPP will require 
session negotiation via messages for a point to point data link to be established. All 
message types must be tolerant of delays incurred by the UNAS processing. 

It is not a requirement to maintain compatibility with software currently used in products 
at Tektronix. 

The UNAS must power up as a 'stand alone' unit. Basic self diagnostics are required. 
Successful power up must be indicated on the unit.  Similarly, the UNAS system must be 
shut down in a manner such that it will not cause network failure in any fashion. 
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The system may be programmed by user input to select a protocol for receive and 
transmit. The system architecture will support some degree of protocol discovery based 
on received data. Any UNAS reconfiguration must be accomplished in less than a 
second. 

The UNAS system will allow user, field, or developmental software updates.  This will 
include user interface and protocol processing algorithms.  The method of updating this 
information is not restricted. 

The UNAS will provide a method of externally accessing debugging information 
allowing verification of the system design and proper functioning. 

3.1.3.6 User Interface 

A User Interface is required to allow the user to setup and query the system for correct 
operation. There is no requirement to have a User Interface present on the UNAS unit 
itself.  A Windows NT interface may  reside on the host system to allow local unit setup. 
The operation of the User Interface will be dynamic as the UNAS is configured. 
Selection of a different protocol will require a new screen to appear and status 
information to be displayed.  The User Interface status information will be updated 
approximately once per second. The User Interface may be implemented using more than 
one GUI, such as Windows for local and HTML for remote input, query and display. A 
remote User Interface, accessible through Ethernet is a desirable feature. The interface 
must be written using commonly available tools with the requirement that the browser on 
the remote device must be Netscape V4.0+ or Microsoft Internet Explorer V4.0+. 

3.1.3.7 System requirements 

Based on the user requirements and the resulting proposed architecture, a System 
Requirements Document was developed. That was followed by a UNAS System 
Architecture Document for hardware and software, which acted as the basis for most of 
the following system design work. 

3.2 Architectural approach 

3.2.1 System 

The UNAS consists of one or more Universal Network Access Engine cards.  Each card 
is identical and software reconfigurable to allow support of different network protocols. 
Figure 3 shows the block diagram of the UNAS, originally intended to use a PCI-based 
platform to provide power, display, user data entry, data interfaces, and access to the host 
processor. 
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Figure 3 UNAS Architecture 

 

 

The use of a ‘compact PCI’ backplane (PICMG 2.0 R2.1i)with a proprietary, POS/PHY-
3-like format was found to be superior to PCI and compatible with a co-developed 
platform at Tektronix. Use of this platform reduced development time and made the 
results compatible with Tektronix network test products. The core of the UNAS is the 
Universal Network Access Engine (UNAE), which supports individual serial I/O.  The 
key element of the UNAE card is the physical layer protocol engine (PLPE), which can 
be re-configured to each of the supported protocols. 

3.2.2 Card level Universal Network Access Engine 
Each UNAE card is designed to be capable of receiving a serial signal, processing the 
protocol format, and passing the data over a parallel interface to the next card.  The same 
card will also receive data from the parallel bus, encapsulate the data into the protocol, 
and transmit the signal through the serial interface. Transmit and receive protocols are 
required to match if duplex operation is demanded. 

It is desirable for the software to provide an algorithm to detect the incoming protocol.  It 
will then load appropriate FPGA code into the PLPE to do whatever processing is 
necessary for that particular serial format.  The input data format is presented for display 
on the GUI.  Upon receipt of a new serial input format, the software will re-configure the 
protocol. 

The UNAE will have the capability of looping back data in both directions.  

The UNAS team undertook an initial study of protocol characteristics looking for 
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similarities which could be leveraged in a protocol processing engine function. Protocols 
included in this study were ATM/SONET, IP in PPP framed in HDLC over SONET, 
Gigabit Ethernet, and cells from a burst switch such as that proposed by Turnerii at 
Washington University or Yooiii at University of California, Davis. Common elements of 
these protocols led to the identification of several functional blocks which could be 
shared in processing of each protocol. These include clock and bit rate capture, frame 
boundary identification, scrambling, descrambling, cell header and payload processing 
and handling of cells or packets as the data format for communication between UNAE 
cards or bridge cards. The bit rate/clock capture and perhaps framing have enough in 
common to be captured in a single ASIC (also performing the high speed SERDES which 
requires the speed available only from an ASIC approach). This is especially true for OC-
48 SONET framing which has significant processing overhead which must be done 
synchronously. The physical layer protocol engine (PLPE) will be best served by 
realization in a high speed electrically programmable logic device, also referred to as a 
field programmable gate array (FPGA) with a library of protocol processing images 
which can be rapidly loaded into the FPGA under software control. This choice of an 
FPGA to realize the PLPE provides a highly flexible architecture for investigating new 
protocol structures, and also influences the PLPE design approach. The functional 
element interfacing the cells and packets to the parallel bus (CPE or cell/packet engine in 
Figure 2) can be readily realized in an FPGA. If speed or reduced cost, are issues this can 
also be ultimately realized in an ASIC.  

Burst data provides a special challenge for any architecture. In the UNAE bit rate 
identification and data capture may be done on burst data through the BRAD, but the 
UNAE cannot discover the protocol of data in bursts – it must be provided that 
information or data will be lost. The architecture also includes attached memory and first 
in, first out (FIFO) memories for rate matching across different clock domains. 

 
Figure 4 shows the data path architecture for a UNAE and attached mezzanine board. The 
on-board i960 microprocessor on each UNAE was chosen to have 32-bit PCI interfaces 
to the Framer, PLPE, CPE and a specialized interface to the DDS and timing modules. 
VxWorks real time operating system (RTOS) runs on the microprocessor to handle real 
time functions, reading and processing information in FPGA and ASIC registers and 
passing messages to the host operating system as needed. The RTOS also handles link 
protocol negotiations as needed. 

Additional useful functionality can be realized through the performance enhancement and 
flexibility from the on board processor. A reconfigurable network terminal device may be 
realized using the UNAE architecture. The additional ability to monitor individual 
network flows for quality of service (QoS) parameters will be of significant value. For a 
network through which a physical or virtual path is established, a network flow is a 
session of data transmission through an established network path. Data units establishing 
such a flow could be IP packets, ATM cells or data bytes depending on the network type. 
QoS characteristics of the data flow (network latency, latency variation or jitter and flow 
rate measurements in bytes/sec) will be important for characterizing both developing and 
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operating networks. A passive QoS measurement may be performed on packets by 
having the PLPE decode in real time the flow identification information contained in 
headers and diverting a subset of this “filtered” data to the RTOS for further processing, 
gathering of statistics, or similar functions Filtered and captured packets could to an 
extent be diverted to an additional processing target connected to the back plane or to the 
PCI bus. This functionality was not implemented in this study. 

3.2.3 Mezzanine boards 
The main UNAE board will have space for a single optical network interface mezzanine 
board that will provide electrical and optical connectivity appropriate to the chosen serial 
standard.  Mezzanine boards may be changed to accommodate different physical 
connectors if necessary. The active physical layer connection can handle input and output 
connection simultaneously for full duplex connections. For special data formats such as 
SDI digital video, two smaller mezzanine cards will fit on a single UNAE. This is to 
accommodate existing video mezzanine boards from other programs. 
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Figure 4 UNAE data path architecture 

Clock and data recovery and Serialization/deserialization functions are performed on the 
mezzanine board. The BRAD ASIC or an equivalent functional block will accomplish 
this. A mezzanine may also be designed to hold commercial CDR and 
Serialization/deserialization IC’s in the place of the BRAD. Details of the BRAD design 
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are included in section 4.2 below in this report. The serial data that enters the DeMux 
exits as parallel data over the mezzanine connector to the Framer. 

3.2.4 Protocol processing engine  
Once the received data exits the deserializer as parallel data, the protocol processing is 
relegated to the combined functions of the Framer, Physical Layer Protocol and 
Cell/Packet Engines (PLPE and CPE, respectively). Transmitted data also flows through 
all these blocks as indicated in Figure 4.  The Framer, PLPE and CPE data processing 
blocks are each described individually in section 4 below in this report. The FIFO is a 
standard off the shelf component that is used for buffering between two clock domains 
when there cannot be assured perfect clock synchronization. The FIFO, in conjunction 
with PLPE and CPE functions may be used to assure data is removed from the FIFO at a 
rate that matches over a time window the rate of input to the FIFO. This is used among 
other things to assure correct play rate of video data. 

3.2.5 System platform 
A Platform Requirements document was created and released Aug 1999.  A Compact PCI 
platform was chosen as it leverages ongoing work at Tektronix to provide a 2.5 Gbps 
backplane in this form factor. This will conveniently meet the needs of the UNAE 
POS/PHY-3 bus. Internally this platform is called Platinum and will be referred to by that 
name in this report. 

By using this platform, development plans could include leveraging earlier work on a 
previous Tektronix developed high speed video network interface using a PCI platform 
with an i960 embedded processor running VxWorks.  The Platinum platform used in 
UNAS is more compatible with telecom and network monitoring standard usage. 

3.2.6 System Software architecture 
A Software Requirements and Architecture document was created and released Aug. 
1999.  Windows NT 4.0 was chosen for the host platform.  Linux was considered an 
alternative to NT for the host OS. However, NT was ultimately used because it has been 
supported and developed on Platinum for Tektronix products. VxWorks 5.2 on an Intel 
i960 microprocessor was chosen for the processing power on the UNAE card and was 
reused from another program to realize a system with reduced development cost and low 
risk. 

The NT host local GUI connects to VxWorks through software passing messages across 
the PCI bus.  A GUI communicating remotely for control and status using HTML or 
other technologies is required.  It is a requirement that the GUI be dynamic in nature, 
having the ability to change and adapt to different protocols. 

The Software Architecture is illustrated in Figure 5.  There are several components 
designed for the NGI program, which span across three platforms.   
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Figure 5 UNAS System Software Architecture 

In Figure 5, there are several blocks designed for the NGI program to support the UNAS 
system.  Each of these will be described in following sections. 

VxWorks OS - The largest software block is the VxWorks Operating System with the 
VxWorks Application Module.  The VxWorks Application Module (not shown as 
separate from the OS) contains all the FPGA images, protocol negotiation software, and 
UNAE specific drivers, and messaging for the GUI.  The Application Module is loaded 
through the NT driver and dynamically linked to the VxWorks core OS. 

NT Device Driver – Scans the PCI bus for UNAE cards, initializes them, and loads the 
Application Module.  Once the module is connected, the Device Driver acts as a conduit 
for messages between VxWorks and the GUI. 

Local GUI – The Graphical User Interface designed for the UNAS system for control and 
status of each UNAE card in the system.  Dynamic in nature, it adapts to the various 
protocols supported in the NGI program.  Written using Visual Studio, the GUI is 
designed for ease of use and the look and feel with other Windows applications. 

HTTP Server – Uses the ISAPI interface to connect with a HTML interface for control 
and status information.  Server translates HTML messages into DeviceIOControl 
messages. 

UNAS Server – Uses sockets for connecting to a JAVA or Win32 application. Server 
translates proprietary messages into DeviceIOControl messages. 
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HTML Remote GUI – A UNAS web based application for control and status of the 
UNAS system from a remote location. 

JAVA or Win32 Remote GUI – A UNAS application running on a remote host for 
control and status of the UNAS system.  Connects to the UNAS Server. 

The VxWorks software also contains data structures for maintaining state information 
and status information.  The PPP Negotiation and Gigabit Ethernet Auto Negotiation 
control software and state machines are also located in the VxWorks module. 

3.3 Design tools and hardware selection methodology 
The Universal Network Access System (UNAS) was conceived as a high speed front-end 
for serial clock and data recovery, followed by several FPGAs to do protocol-dependent 
framing, overhead extraction/insertion, payload extraction/insertion, error detection, and 
formatting for transmission across a UTOPIA/POS interface. These functional blocks 
required high performance, sophisticated designs. This provided both the need and the 
opportunity to select tools that would provide the most powerful design environment for 
manipulating data formatted in cell, packet and transport frame protocols. 

3.3.1 Hardware design and simulation requirements 
The UNAS requirements to implement several high speed communication protocols 
make the hardware design a difficult task. It was initially thought that a complete system 
model would be needed, simultaneously describing the ASIC’s, programmable logic, 
processor, and control software, in order to simulate operation of the entire system for the 
various supported communications protocols. A survey was performed to identify 
software products which are primarily designed to model the entire electronic system 
comprising multiple chips, programmable hardware and software. Results of this survey, 
taken in 1999, are summarized here. 

Opnet Mil3 is a high-level modeling environment meant to simulate the performance of 
networks (switching delays, queuing models, etc.). According to available company 
information, the software has the ability to model every cell in an ATM stream, and can 
also model call set-up. Models are written in a graphical environment; while behaviors of 
elements are written in C. Prepared models are available for PPP, gigabit Ethernet and 
ATM. 

Object GEODE from CS Verilog uses graphical input (message sequence charts) to 
generate an SDL model of a system. SDL is a Specification and Description Language 
standardized as International Telecommunication Union - Recommendation Z.100 and is 
designed to communicate extended finite state machines expressed as processes. The 
system is simulated by executing SDL code. C code can be generated from SDL for 
supported processors. At the time of the survey there was no way to get to hardware 
designs directly from the SDL model although a company named Arexsys was working 
on a solution that was a minimum of 6 months out. 

Cadence BONeS Designer is a Block-Oriented Network Simulator for the design and 
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analysis of system architectures, networks, and protocols. It consists of a Data Structure 
Editor, a Design Simulation Manager, a Finite State Machine Editor, an Interactive 
Simulation Manager, and a Project Editor. It has the capability of incorporating SDL 
code from outside sources into its simulations, but no facility to generate hardware 
designs. Models available of interest include ATM and Ethernet. 

Telelogic has developed a suite of tools for modeling and simulating systems using the 
SDL language. Tools are the Object Model Editor, the MSC Editor, the SDL Editor, the 
SDT Analyzer, the SDT Simulator, and the Cadvanced/Cmicro Code Generators. The 
tools are reported to be good for state machine design and poor for algorithm design. 
There is no path to hardware from the SDL models: SDL code can be imported to 
Cadence BONeS for simulation, but there is no autogeneration of VHDL/Verilog. ATM 
models were pending availability from second party supplier Cellware. 

With this and similar information in hand, starting with a high level system model with 
the intent to drive it down through successive steps finally to a hardware description 
language (HDL-level) hardware design was seen as a roundabout and difficult method to 
achieve success. A high level system model was then viewed by the team as a process 
which would draw resources away from the already largely specified design task at hand 
and would not provide a more automated or more efficient design or testing environment 
nor would it contribute substantially to enhancing the probability of success of the UNAS 
design. There are still three ways a model or design environment can help realize a 
successful design: 1) It can generate the architecture, 2) it can verify the architecture, and 
3) it can verify the design implementation. Of these, benefits 2) and 3) were deemed to be 
mostly directly beneficial and drove our selection of the type and source of EDA tools. 

In order to implement protocol-specific hardware as loadable images in FPGA’s, several 
different designs must be quickly implemented in an HDL that could be synthesized to 
FPGA hardware. It was desired that the hardware design tools reduce the design effort 
required to implement multiple protocols, and make it possible to easily reuse design 
blocks and to allow easy modifications to designs. 

The following were requirements for hardware design/simulation tools: 

1. Generate Verilog HDL code for FPGA synthesis 

2. Provide a design framework that reduces design time for network protocols 

3. Provide for reuse of design blocks and ability to make design changes easily 

4. Simulate the design quickly (OC-48 framing requires processing >106 data bits) 

5. Provide a capability for including the hardware design into a system model if needed 

Software from six vendors was evaluated for use in the NGI Universal Network Access 
System (UNAS) design. The design software was evaluated with respect to the criteria 
listed below: 

1. Appropriateness of the tool for the design problems to be undertaken  

2. Efficiency of designing with the tool compared to coding directly in Verilog HDL 
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3. Usefulness of tool output code (including or in addition to Verilog output) 

4. Ability to link hand-coded Verilog into design 

5. Ease of learning the tool and becoming productive 

6. Ease of design changes and the ability to reuse design blocks 

7. Availability of timely support 

8. Ease of project documentation 

The Cadence software has been installed as the tool of choice for Verilog simulation at 
Tektronix (Verilog-XL and NC-Verilog). Since other tools did not provide substantial 
additional benefits, the Cadence tools were used for simulation. Simulation times using 
Verilog XL were estimated in advance to be up to several hours for large FPGA’s using 
the fastest Solaris platform currently available. 

3.3.2 Hardware synthesis requirements 
Verilog HDL was the design language used for the UNAS project so a synthesis tool that 
takes Verilog netlists and generates FPGA code was needed. The tool must generate code 
specific to the type of FPGA chosen for the design (for example Altera Apex or Xilinx 
Virtex). 

The following are requirements for hardware synthesis tools: 

1. Good coupling to the design tool chosen 

2. Generates fast and efficient code for the hardware device chosen 

3. Synthesis parameters settable for parts of a design to tweak performance 

4. Easy to debug designs 

Synplicity Synplify software is installed as the tool of choice at Tektronix for 
synthesizing Verilog designs for FPGAs. It meets all the requirement s above. Since other 
tools do not provide substantial additional benefits, Synplicity software was used. 

3.3.3 Hardware verification requirements 
An independent check for correctness of implemented communications protocols in the 
UNAS hardware and software designs was needed. Consequently, one or more engineers 
different from the hardware design team assembled a protocol test bench for some  of the 
protocols implemented. The test benches consist of a packet/stream generator and a data 
checker to verify correct handling of the data. The test benches were designed using a 
commercial software tool. 

The following requirements were identified for hardware verification tools: 

1) Ability to generate a complete series of test frames to exercise the frame-
synchronization circuits at the UNAS input (several million bits for OC-48 SONET 
frames) 
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2) Able to model the hardware at a high level of abstraction 

3) Generate reuseable code for test benches 

4) Increase efficiency in coding stimulus generation and data-checking over that 
possible using C or Verilog 

5) Provide a high design coverage for verification 

6) Must be compatible with other tools chosen for the design 

3.3.4 Tool selection 
Evaluations of tools for hardware design, simulation and verification included C-Level 
Design from C2Verilog, ArchGen/ASVP Lab from CAE-Plus, Protocol Compiler from 
Synopsys, Cierto Hardware Design System/Signal Processing Workshop from Cadence, 
and Renoir from Mentor Graphics. Also evaluated were design verification tools suites, 
including VERA from Synopsys and Design VERIFYer/Design INSIGHT from 
Chrysalis. The following software was chosen for the design and simulation of the NGI 
PLPE hardware: 

Design: Synopsys Protocol Compiler, Verilog HDL 

Simulation: Cadence Verilog XL, NC Verilog 

Synthesis: Synplicity Synplify 

Verification: Synopsys VERA 

Protocol Compiler is specialized for designing hardware systems where the input/output 
is data and control information contained in frames. It is specifically intended for the 
creation of state machines for the control logic of communication protocols. Through a 
graphical interface the designer associates actions with specific parts of data frames. The 
software then synthesizes protocol control logic and generates HDL code for the design. 
Protocol Compiler’s design also facilitates making changes to the design: changes are 
made at a high level in Protocol Compiler and new Verilog code is generated by the tool, 
which can then be simulated and synthesized into hardware. There is some issue with the 
speed of simulation of Verilog code where simulation of framing mechanisms of different 
protocols are involved. Cadence Verilog XL was adopted for HDL simulations. Verilog 
HDL allows linking of hand-coded modules into Verilog design output of Protocol 
Compiler. It is a tool that has been in use at Tektronix and is supported. A large amount 
of data will need to be processed to test framing. A compiled Verilog simulator could be 
used to bring simulation times down to a reasonable duration. 

Synplify was chosen for synthesis of the Verilog design to hardware. It was the 
consensus of the design group at Tektronix that this tool currently provides the best 
FPGA implementation of a hardware design from Verilog code. Experiments with 
synthesis of Verilog code for Altera PLD designs indicated that it compares well to 
designs synthesized with Altera’s dedicated software. 
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Three hardware design engineers received training available for Protocol Compiler before 
commencing design work. 

For hardware verification of Protocol Compiler designs, Synopsys VERA software was 
chosen. This software provides significant advantages over writing test benches in either 
Verilog or C code in terms of both efficiency of code and effort involved in developing it. 
VERA is a superset of Verilog code that is enhanced for the purpose of test bench 
generation. Some weight was given to the fact that the software is from the same vendor 
as the design software that will be used, putting the responsibility for software 
compatibility with the vendor. Efforts have also been underway by Synopsys to make the 
VERA verification language a standard. 

3.3.5 Hardware assumptions and selection  
Following an initial study of protocol similarities which could be leveraged for a protocol 
processing engine, common elements of these protocols led to identification of several 
functional blocks which could be shared in processing of each protocol. These include 
clock and bit rate capture, frame boundary identification, scrambling, descrambling, cell 
header and payload processing and handling of cells or packets as the data format for 
communication between UNAE cards or bridge cards. Due to the extremely fast real time 
processing needed for the serial front end (clock and data recovery and 
serialization/deserialization) an ASIC was chosen. The BRAD was chosen to fulfill this 
role as described. The framing function is also computationally demanding even though 
processing is done on demultiplexed data. This is especially true for OC-48 SONET 
framing which has significant processing overhead which must be done synchronously. 
There is some risk in assigning an FPGA to this task but the flexibility suggested this is 
the best way and was worth the effort. The physical layer protocol engine (PLPE) will be 
best served by realization in a high speed electrically programmable FPGA logic device 
with a library of protocol processing images, which can be rapidly loaded under software 
control. This choice of an FPGA to realize the PLPE provides a far more flexible 
architecture for investigating new protocol structures, and also influences the PLPE 
design approach The CPE which interfaces the cells and packets to the parallel bus can be 
readily realized in an FPGA. The architecture will also include attached memory and first 
in, first out (FIFO) memories for rate matching across different clock domains and 
embedded SDRAM for buffering data for in line calculations, reordering of data streams 
and similar manipulations. 

The BRAD ASIC was defined to be an internally designed CMOS chip that would handle 
the clock and data recovery (including burst data) and mux/demux functions. A 
feasibility study was undertaken to assure that it would perform as needed at the highest 
data rate for the most demanding protocol. Based on the results of the CMOS feasibility 
study an alternative of using a SiGe process instead was proposed. This technology was 
shown to be extendable to 10Gbps. 

Once all major functional blocks and the overall architecture were determined, with I/O 
dedicated to a mezzanine that includes the BRAD and a set of duplex electrical and 
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optical interfaces, decisions were made on the nature of, generation, and distribution of 
all clocks. Three independent direct digital synthesizers (DDS’s), with timing references 
optionally derived from GPS satellite UTC, provide reference clocks for the I/O 
mezzanine receiver and transmitter, and the card to card back plane data interface. The 
I/O mezzanine provides synchronous interface timing for transmit and receive paths and 
to the remaining blocks distributed on the UNAE motherboard. A high density FPGA 
family (Altera APEX, 400K-1.5M gate) was tentatively chosen to realize the 
implementation of  the Framer, PLPE, and CPE blocks.  The main circuit board and 
attached mezzanine is to fit into one slot of the industry-standard compact PCI (CPCI) 
chassis.  Although Altera and Xilinx FPGA components are comparable offerings, the 
Altera toolset was considered easier to use. This influenced selection of Altera’s APEX 
FPGA family. 

Initial plans were to leverage earlier Tektronix work, using a PCI platform with an i960 
embedded processor running VxWorks. This was connected to an NT host through a 
system of software passing messages back and forth across the PCI bus. However, based 
on several considerations a Compact PCI (CPCI) platform was adopted instead. There 
was ongoing work at Tektronix to provide a 2.5 Gbps backplane in this form factor, 
which will conveniently meet the needs of the UNAE back plane bus. The i960-RD 
processor, VxWorks and NT host remained. The on-board i960 microprocessor on each 
UNAE was chosen to have 32-bit PCI interfaces to the Framer, PLPE, CPE and a 
specialized interface to the DDS and timing modules. 

3.3.6 Design tool and manufacturing support 
Tools support was provided for the software design tools by Tektronix’ Electronic Design 
Tools group, which is part of Central Engineering services. These services also include 
board layout support and mechanical engineering support. This included SW tools 
maintenance, license check out and server resources. All technical work on the tools was 
done by the NGI project team. Only the Synopsys Protocol Compiler and VERA were 
not Tektronix standardly supported tools. 

Tektronix has an infrastructure for new product development and introduction that 
includes component procurement, fabricated board procurement, automated board 
manufacture and assembly, and custom hand-placement for special parts that are not 
compatible with volume tooling. This project used these faclities to complete builds of 
working boards in a timely manner. Reworks for incorrect and damaged parts were also 
supported by the new product manufacturing facilities. 

3.3.7 Functional and performance testing 

3.3.7.1 Simulation and test benches 

Designs, once realized were simulated at several levels: First, using functional 
performance test benches such as VERA or Verilog to make sure the logic is 
implemented correctly. Protocol Compiler includes a simulation tool that does Verilog 
simulation. It also includes a waveform editor to simulate the logic timing of the design at 
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a high level. Thirdly, pre and post-place and route timing checking: Quartus, the Altera 
floor planning tool, has timing simulators as does Synplify from Synplicity.  

Developing and using a test bench can be complemented by other means for reduced risk. 
For example the Framer and PLPE elements were intended to be advanced programmable 
logic devices, each with a library of protocol-specific images to be loaded and executed. 
One critical task became designing the executable image for each chip for each protocol. 
Realization of each protocol relies on use of a published standard. Misinterpretation of 
the standard can lead to subtle errors which may be difficult to debug. A verification 
methodology was chosen to address this issue. For each protocol, a hardware design 
based on the written standard was done by a knowledgeable engineer. A second engineer 
independently developed a test bench based on the same standard. Verification of the 
hardware design using the independent test bench provided confidence that both 
implementations were correct. Three software design engineers received training for the 
VERA verification language before commencing design verification work. 

Using SONET as an example: A SONET Framer test bench design was developed in the 
VERA development environment. SONET frame recognition, pointer processing, and 
scrambling/descrambling portions were included. Passing the test bench made the 
SONET receiver more reliable, working gracefully under erroneous conditions, e.g., 
when bit errors are injected. VERA will also be used to make the SONET transmitter 
more configurable. 

The next step in the hardware design task is to synthesize the FPGA. This is where the 
feasibility of the approach becomes more clearly defined. Protocol Compiler was proven 
to be an efficient design entry and verification tool. The Verilog files produced by 
Protocol Compiler were input to Synplicity to produce FPGA images. Timing checks will 
be performed on the Synplicity output to verify that the FPGA is fast enough. Once these 
timing checks have been made an evaluation of the design approach and its limitations 
may be made. 

The PLPE OC-48 Packet-over-SONET implementation including extensive testing of the 
PPP receive and transmit designs were done using VERA test benches, and error free 
operation was observed 

Alternatively, several modules were designed using a more conventional approach, either 
because the design was simple enough for this to be more efficient (Cell Packet Engine 
block) or because it was imperative to have more direct control over the resultant HDL 
code for enhancing the performance. The Gigabit Ethernet design was simulated using a 
test bench created using Verilog. There were four stages of simulation and verification 
performed during the design and debug of this system. First individual portions of each 
FPGA in the system were simulated with a functional RTL test bench designed to verify 
that specific portion of the design. Second, an RTL simulation was performed on each 
FPGA in the system. Third, the entire system was functionally simulated using a top-
level test bench. Finally the entire Gigabit Ethernet system design consisting of three 
FPGA’s was simulated using a Verilog model for each FPGA which included back-
annotated timing information.  
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3.3.7.2 Laboratory testing of functionality 

Design tools were chosen to provide as accurate and thorough a simulation of 
designs and components as practically necessary. However, verifying 
performance in the lab is necessary to successfully debug designs, verify 
successful system level integration and determine performance limits before 
attempting any network testing. Efforts included improving our testing 
infrastructure and exploring how close a high performance (gigabit and 2.5Gpbs) 
network could be brought to the Tektronix site for extended testing.  

To meet the requirement of realizing a UNAS evaluation and demonstration environment 
using primarily lab-level testing, capital purchases of packet over SONET and gigabit 
Ethernet signal generation and measurement equipment were made by Tektronix in order 
to support program activities. Network and packet testers were purchased from both IXIA 
and Spirent/Adtech. A GSR12000 router with multirate OC-3/12/48 Packet over SONET 
and gigabit Ethernet line cards was purchased from Cisco for an internal project; and this 
was also made available for the current NGI program. Measurements on early versions of 
a UNAS system, when a functional BRAD would not yet be available would be needed 
for program progress. This was to be addressed by developing hardware and software for 
a dedicated ASIC test & operation evaluation environment, consisting of an operations 
platform, a test protocol generation card, and an ASIC test and evaluation card, if needed. 
An operating system, bus interfaces and driver software for the test environment would 
all be required for testing.  

The latter challenge was addressed using the UNAS itself as a development platform. It 
was able to generate, in conjunction with external test equipment, all test signals required 
to test system component functions as development progressed. 

3.3.7.3 Gaining access to field testing on networks 

Once laboratory experiments showed feasibility and provided performance parameters, it 
made sense to broaden the scope to connecting into actual operating networks to exercise 
UNAS capabilities. Early and continuing efforts addressed collaboration and cooperation 
with other NGI members on the planning and conduct of test bed demonstrations to 
address hardware and software interoperability issues.  

Several activities have occurred throughout the program to develop collaboration 
opportunities and procure access to research test bed networks: 

Tektronix initiated discussions with Ben Peek of GST Telecom and Hal Edwards of 
Nortel regarding interoperability of the UNAS technology and NTON II. Discussions 
were held with Ben Peek, GST starting August 20, of 1999.  Considerations included 
video transport, data security and network monitoring functions. Additional 
conversations were held with Bill Lennon, responsible for NTON applications, regarding 
opportunities for collaborating with NTON II. Meetings with Ben Peek also addressed 
the prospect of fielding both passive and active IP flow monitors on NTON II. And an 
architecture for a passive monitor (based on the UNAS) was discussed. This was to 
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considered a promising technology with far reaching value to a research network like 
NTON II and with significant potential for commercial use. Follow up meetings were 
held October 8, November 18 and December 3. From January – June 2000 discussions 
started with GST, Avici and Tektronix to establish a colocated development lab, using 
floor space donated by Tektronix, for advanced development, interoperability 
experiments and Beta testing of new commercial equipment. This co-locate space was to 
be a key element of substantial value in developing the demonstrations in the UNAS 
program. However, by June GST’s financial situation required resolution under Chapter 
11. Time Warner Telecom purchased most of the assets of GST; but NTON II and the co-
located development lab were unresolved issues. 

In September, 1999 UNAS Program Manager Kirk Boyer contacted NGI Principal 
Investigator Chandrasekar Chandra at CSU to discuss video transport needs of his 
program. It wasn’t clear that the CHILL program had a clear view of needed 
collaboration at that time. Chandra was invited to contact Tektronix for further 
discussions. These discussions, primarily at subsequent NGI Principal Investigators’ 
meetings, indicated that the needs of CHILL facility were not aligned with UNAS 
capabilities. 

On October 13, 1999 Kirk Boyer visited Traci Monk and NGI Principal Investigator K.C. 
Claffy of CAIDA to discuss respective plans and potential for collaboration.  An NDA 
was submitted to CAIDA by Tektronix on October 19, which was not processed by 
CAIDA due to conflicting intellectual property issues with another corporate sponsor. 
One area of mutual interest was the ability to optically filter DWDM data to select flows 
belonging to a specific lambda and subsequently filter the IP or ATM flow for QoS 
applications. Because this second attempt to collaborate on QoS measurements faltered, 
priorities in the program were redirected to solving other significant technical challenges. 
One of these was transport of very high data rate, uncompressed HDTV video over IP 
networks. 

Phone conversations were initiated by Tektronix in late 1999 with NGI Principal 
Investigator Alison Mankin of ISI East to explore interest in transport of both 
uncompressed and compressed HD video and audio data. Collaboration topics included 
helping to specify HD acquisition and display equipment and to contribute to a proposed 
Internet draft to IETF: “RTP Payload Format for Uncompressed HDTV Video Streams.”  
This included making sure the proposed payload format can accommodate the SMPTE 
292M serial transport steam format to be used in the UNAS program. The proposed 
transport format is RTP/UDP/IP with special RTP header information to assure 
compatibility with other sources and receivers of the video. An IETF draft (draft-ietf-avt-
smpte292-video-00.txt, July 13, 2000) was prepared by Allison Mankin and Ladan 
Gharai at ISI East, David Richardson of the University of Washington and Tektronix. A 
requirements document for video operation of the UNAE board was also written (NGI 
UNAS Video Requirements Document, revision 1.0, July 31, 2000). A demonstration of 
HDTV transport using RTP/IP in Packet over SONET using Internet2 and the Supernet 
was planned for November at the SC2000 meeting in Dallas, TX. The UNAS hardware 
was unable to meet necessary internal timing requirements and the intended 
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demonstration was not shown at the SC2000 meeting However it did go on to make a 
significant, positive impact at SC2001 in Denver, CO in the NCO ITR&D booth. With 
our partners ISIE, U of W, Internet2 and Level3 the UNAS transported 1.5Gbps HDTV 
losslessly in IP packets through an OC-48 packet over SONET network from Seattle to 
Denver. 

Efforts to place a GST/Avici/Tektronix collocated facility on Tektronix’ campus failed. 
However, use of dark fiber on Tektronix’ campus was considered, in conjunction with 
DWDM equipment from LuxN, to field a demo of the project’s results on a local area 
network. Discussions were initiated with ATT Broadband to provide managed OC-48 
service and with MFN to provide dark fiber, originating on the Tektronix LAN, to a 
carrier hotel in Portland. A carrier at that POP could carry the data to a Seattle GigaPOP 
for connection to I2/NTON and HSCC for a WAN demonstration. This would be an 
alternative to transporting project equipment to University of Washington to act as the 
western terminus of demonstrations. Until recently, there was no lit up OC-48 link from 
Portland to Seattle. Additional efforts with the Portland Exchange, a consortium of 
network users developing a network centered on the Pittock Building in Portland and 
with Tyco Communications have not yielded access to 2.5Gbps links without restrictive 
costs. 

Finally, based on communications with NGI Principal Investigator Ben Yoo, UC Davis, 
an additional task was added to the UNAS program to enhance the UNAS engine to 
support Optical Label Switched Router technology through a collaborative Subcontract. 
The work was funded and has resulted in demonstrating successfully a gateway between 
a conventional packet based network (OC-48 packet over SONET or GbEthernet) and an 
all optical packet switched network running at 2.5Gbps. 

Results of testing the UNAS on wide area networks are covered in section 4.3 of this 
report. 
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4 System Development 

4.1 SW development 

4.1.1 Design objectives 
The software allows the UNAS system to power up as a stand alone system, allowing the 
user to select various protocols and operating modes and to monitor performance of the 
network link with responses on the order of seconds or fractions of seconds. The 
operating system is an OS in standard use with ready access to modifications and 
upgrades. It must run diagnostics to assure full boot is achieved. The UNAS acts as an 
attached network element so that software on the protocol processing boards must be able 
to interact with and process the data flow fast enough that normal operation of the 
network and attached network elements are not impeded when communicating with or 
through the UNAS. Link negotiation with other network elements needs to be supported. 
Turning on and off the system must not interfere with other network elements in any way 
except to announce and acknowledge intent to disconnect active links. The software must 
support selection and monitoring of various parameters of the signal such as network 
protocol, physical layer, transport layer, data encapsulation and scrambling. Status such 
as alarms, errors, and loss of signal must be made available to the user or system 
controller on demand. Exchange of information between the user and system needs to 
take place through a simple to use and informative User Interface. 

Software, firmware and user interface modifications and upgrades should be realizable 
through a network interface such as Ethernet. 

4.1.2 Summary of Work: Software design and implementation 
All portions of the software described in this section have been architected, designed, and 
implemented for the Next Generation Internet (NGI) program, with the exception of the 
two operating systems purchased from external vendors. 

4.1.2.1 Operating Systems 

The operating systems for the UNAS system consists of a host operating system (OS) for 
user interaction and an operating system for real time signal processing.  The two 
operating systems communicate with each other through a predetermined suite of 
messages.  These messages allow the transfer of small amounts (less than 512 bytes) of 
data between them.  These messages allow setup information, status information, and 
conditional information to be passed between the host OS and the UNAE OS.  It is not 
the intent of this project to pass the raw high-speed data stream from a selected protocol 
to the host processor by any method. 

Host Operating System 

Windows NT 4.0 with Service Pack 5 is used on the host processor for the operating 
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system on the Compact PCI platform.  The User Interface is constructed using Visual 
C++.  Windows NT was chosen for common knowledge of use, system updates, and User 
Interface development tools.  The development platform is a PC workstation. 

VxWorks  

VxWorks version 5.2 real time operating system is used on each individual UNAE card.  
VxWorks is a proven operating system used by several groups within Tektronix.  Each 
card provides an interrupt to the on board local processor every 100 ms. The interrupt 
handler gathers protocol, network, etc. status information and keeps this status 
information locally until it is requested by the host system.  The VxWorks operating 
system runs on an Intel I960 microprocessor located on each UNAE card.  This model 
was selected to maintain all processing of the protocols on the board level rather than the 
host microprocessor.  The development platform is a UNIX workstation running Solaris. 

4.1.2.2 System Operation 

The UNAS software allows the user to select the various parameters of a given signal.  
These include the physical layer, network protocol, transport layer, data encapsulation, 
and scrambling.  Status information, such as signal loss, loss of frame, errors, alarms, 
etc., is presented to the user.  The status information is gathered from the FPGA registers 
and kept in data structures in VxWorks.  The system operation is described in the 
following sections. 

System Boot 

On initial power on conditions, the Compact-PCI bus resets the individual UNAE cards 
and then proceeds to boot the host operating system.  Initialization of host hardware, file 
systems, and Windows User Interface is also included. 

UNAE Boot 

The UNAE cards, upon receiving a reset on the PCI bus, resets the on board processor, 
start the VxWorks operating system software located in Flash ROM on the card.  This 
VxWorks image is the basic core operating system and does not have any specific 
hardware drivers for any of the protocols or hardware.  The VxWorks image is limited to 
the I960 processor, PCI bus, FLASH ROM, and dynamic RAM.   

The VxWorks core operating system image is compressed in the FLASH ROM.  At reset, 
the I960 processor will start executing the image from FLASH ROM.  During this 
process, the I960 will configure itself from the initialization portion of the image.  The 
processor will then uncompress the VxWorks image and place it in dynamic RAM.  The 
VxWorks operating system is then started. 

The basic VxWorks operating system is up and running.  It has a basic message system 
and is waiting for a message to be received.  The message it is waiting for is from the 
Windows NT driver with specifics for the VxWorks application to be loaded into 
dynamic RAM and then dynamically linked to the core VxWorks operating system.  
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Total time to this point from power applied is on the order of a few seconds. 

Windows NT Boot 

The Windows operating system is also being brought up when power is applied.  This is a 
standard release of Windows NT 4.0 with Service Pack 5.  This will take several minutes. 

Starting the NT Driver 

At the point that the Windows NT is up, then the NT Device Driver can be started.  The 
NT Device Driver was designed with several functions.  The NT Device Driver will first 
scan all PCI slots in the mainframe looking for UNAS cards.  Once it finds a card, it will 
initialize the card.  The NT driver will then allocate contiguous memory and load a 
VxWorks Application Module from the NT harddisk into the NT controller’s allocated 
memory.  The NT driver will then send a message to the VxWorks on the UNAE card 
with the NT memory information of the VxWorks Application Module.  The core 
VxWorks operating system on the UNAE card will receive the message and set up a 
DMA transfer based upon this message.  The DMA transfer is performed by the I960 on 
the UNAE card.  After completion of the transfer, the VxWorks application module is 
then dynamically linked to the VxWorks core operating system.  

The NT Device Driver itself is “unas.sys” and is located at C:\WINNT\system32\drivers 
on the host platform. 

The NT Device Driver fetches the VxWorks Application Module from a specific location 
on the hard disk.  The name of the file is “unas_drv.o” and is located at 
C:\WINNT\system32\drivers on the host platform. 

VxWorks Application Module 

This module is the largest piece of the software system developed by the NGI team on the 
UNAS.  The module initializes all of the hardware, loads the FPGA images (the FPGA 
images are embedded in this module), installs a new message system, destroys the old 
messaging system, installs interrupt handlers, contains all status and state information, 
contains routines for PPP negotiation, Auto Negotiation for Gigabit Ethernet, FIFO level 
managing routines, and more.  

The VxWorks application module is compiled on a UNIX platform using GNU tools.  
The target processor is the Intel I960 microprocessor.   

Messaging System 

The messaging system is the method of communication between the NT controller and 
the VxWorks operating system.  Messages are designed on this program to provide setup, 
control, and status information.  The VxWorks module is loaded by the VxWorks core 
operating system by a DMA transfer.  Once the transfer has completed, the VxWorks OS 
will first dynamically link the new module.  The initial messaging system is then 
removed and a new messaging system for the UNAE is installed.  The initial messaging 
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system consists of four basic commands to set up the DMA transfer.  The new messaging 
system contains close to thirty messages specific to the UNAE and the protocols 
supported. 

The messaging system is implemented by using the internal mailbox registers in the I960 
processor on the UNAE board.  The NT controller communicates with the VxWorks 
through this path.  The NT controller will place a message in the mailbox registers and 
then the I960 processor will then receive an interrupt that a message has been received.  
The VxWorks will then process the message for the setup or status requested. 

The messages are in the form of basic commands.  Example are: MU_GET_STATUS, 
MU_SET_PARAMS, MU_RESET_HISTORY, etc.  All state information for the 
protocols are in the VxWorks portion of the software and are supplied to the NT 
controller by request.  There are approximately thirty messages for each UNAE card. 

Each message has a distinct structure shared by the NT driver and VxWorks.  For 
example, the MU_RESET_HISTORY message is a command to reset the “history” 
portion of the status and counters.  It requires no other parameters.  The VxWorks will 
then return an acknowledgement to the NT controller when the task is complete.  A 
MU_GBIT_SET_PARAMS message on the other hand will set the 48-bit source MAC 
address, a 48-bit destination MAC address, the transmit clock source, and diagnostic 
loopback type, all in the same message. 

The messages are aligned in both the NT driver and VxWorks by defining the messages, 
values, data structure, transfer of messages, etc in two files.  They are “deviceMsgs.h” 
and “deviceMsgs.c”.  These two files are used to compile the NT Device Driver, the 
VxWorks Application Module, and the User Interface code.  Once the cards are 
initialized and the VxWorks Application Module loaded, the NT Device Driver is 
basically nothing more than a conduit of these messages from the User Interface to 
VxWorks.  Care was taken in the program to ensure the messages stayed in sync 
throughout the entire software design.  

There is also a window on the Windows NT desktop that can be started.  It is the 
VxWorks “shell”.  This allows the user or engineer to get access to the VxWorks shell 
commands directly.  The method used for gaining access is through a second set of I960 
mailbox registers that are specifically reserved for passing of VxWorks commands.  The 
“shell”, similar to a UNIX command line, is used to gain access directly to registers, 
memory, and functions in the VxWorks software. 

FPGA Images 

The FPGA images are compiled, by the hardware team, into “ttf” files .  These are ASCII 
text files corresponding to the binary value to be programmed by the FPGA loader 
routine.  These files are constructed by the software build environment with headers and 
trailers on each file, making them into “C” language arrays.  These arrays are then 
compiled into the VxWorks Application Module. 

The routine to program the FPGA is also in the VxWorks Application Module.  It will 
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take the array values and then program the FPGAs.  It will also report the status of the 
load process through the VxWorks shell. 

UNAE Hardware Initialization 

The application module then loads the CPE FPGA, initializes hardware registers, and 
then scans for the mezzanine type to load the appropriate Framer and PLPE FPGA 
images.  The three DDS (Direct Digital Synthesizer) are then initialized.  Next the 
Interrupt Handlers are installed and enabled.  Internal reset of the FPGAs is then 
performed.  Reset of the status data structures is performed. 

This system initialization is designed to initialize the system on power up and also when 
the user switches the protocol using the User Interface.  An example is switching from 
SONET OC-48 to Gigabit Ethernet.  Everything stated in the previous paragraph is 
reloaded and initialized, with the exception of the CPE image, which is common to all 
protocols.  The CPE’s function is to pass IP data across the high-speed backplane to the 
CPE on the adjacent UNAE module. 

Status Monitor 

The status information for the UNAE card is collected every 100ms by the VxWorks 
operating system.  The source for the 100ms period comes from the CPE, which takes a 
clock reference and divides it down to generate an accurate interrupt to the I960.  The 
status information is stored in data structures in the VxWorks operating system.  The 
100ms rate was selected based upon error counter size, rate of incoming data, and ease of 
calculating error rate information. 

The User Interface task is designed to poll the VxWorks system approximately once per 
second to update the User Interface with the status information. 

The status history mechanism is a set of data structures that accumulates the error and 
alarm conditions over time (time since last reset, as displayed on the User Interface).  The 
“Reset History” button on the UI will clear the data structures and also the counters in the 
hardware. 

PLPE Buffer 

The SONET POS was designed with a buffer between the packet stream and the 
microprocessor.  The buffer allows packets to be filtered from the incoming stream and 
also allows the microprocessor to inject packets into the outgoing stream.  This is 
required for POS for PPP negotiation.  The SONET POS PLPE FPGA image has filters 
to check the receive stream for LCP (Link Control Protocol) and IPCP (Internet Protocol 
Control Packets) contained in the HDLC framing.  These packets are filtered from the 
stream and redirected to a FIFO implemented on the FPGA.  These packets come across 
the network from the nearest router and at a very low rate (approximately 2 per second).  
These packets average about 20 bytes in size.  Once a complete packet is placed in the 
RFIFO, an interrupt is generated to the microprocessor for processing the packet in the 
PPP software.  The transmit path works in reverse.  The packet is placed into the PLPE 
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TFIFO and then a bit is set, informing the PLPE there is a packet to be put in the transmit 
stream.  This outlines the physical mechanism and not the complete PPP State Machine 
software description. 

The data packets, filtered in hardware, are sent to the local I960 microprocessor for 
processing.  These packets are identified in the hardware as setup packets, which can be 
processed without any critical time constraint. Packets that fit into this category include 
any type of stream negotiation, where the return packet does not have to get there 
immediately.  This includes PPP/HDLC Negotiation and Gigabit Ethernet Auto 
Negotiation.  The purpose is for the processor to handle this type of packet information so 
the hardware does not have to handle it.  This does not include IP processing, since the 
data stream would overload the processor in an extremely short time. 

The majority of the design and implementation was in the PPP Negotiation software and 
the Gigabit Ethernet Auto Negotiation software.  A packet parser, state machines, packet 
formatter had to be created for this program.  Access to debugging these blocks was also 
implemented. 

Packet Processing 

There are three major sections for the processing of the negotiation packets.  They are the 
Packet Parser, Packet State Machine, and the Packet Formatter.  The sections are 
different for each of the defined protocols as the packets will differ in size and content for 
each protocol.  The software is written to include all the sections for all protocols 
supported and the correct ones are called depending upon the unit setup.  

Packet Parser 

The first step in processing a setup packet is to parse the header to identify what type of 
packet it is.  Once it is identified and the parameters are extracted, the information can 
then be passed to the Packet State Machine.  

It is the job of the Packet Parser to interface with the receive queue memory system to 
extract the packet of data from the memory, provide the handshaking with the hardware, 
and to clear the buffer once the data is extracted. 

Packet State Machine 

The Packet State Machine receives the packet information from the Packet Parser and 
then identifies the necessary function.  For example, in the case of establishing a 
connection, a return packet is made by the Packet Formatter to be sent on the Transmit 
link as a response to a query packet.  The Packet State Machine is located in VxWorks 
and not the host.  Each protocol has a separate state machine dedicated for the operation 
of the protocol selected.   

Packet Formatter 

A response packet is created by the Packet Formatter to respond to a packet query.  The 
response packet is “formatted” into the appropriate header and data content for the 
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protocol message to be sent.  The packet is placed in the transmit queue memory system 
and the transmit hardware is notified of a message in the queue to be sent.  The transmit 
hardware sends the packet at the next available opportunity and then clear the transmit 
queue memory. 

Mezzanine FPGA  

A similar mechanism to the PLPE Buffer is implemented for Gigabit Ethernet.  The Auto 
Negotiation for Gigabit uses TX Config Register and RX Config Register for 
communicating the capabilities of each end of the link.  The mezzanine FPGA hardware 
will monitor the RX Config Register for a new value received and when the new value is 
stable for at least three clock cycles, the FPGA interrupts the microprocessor.  The Auto 
Negotiation software then determines the action to take based upon the Auto Negotiation 
state machine software and will set a new TX Config Register value to be transmitted.  
This outlines the physical mechanism and not the complete Gigabit Ethernet State 
Machine software description. 

The Auto Negotiation required a timer of 10 to 20 ms to be designed.  This timer is 
implemented in the Gigabit Ethernet PLPE FPGA as a 15ms timer.  The software will 
start the timer and an interrupt will be generated 15ms later.  The timer is controlled and 
used by the Gigabit Ethernet State Machine software. 

PPP State Machine Software 

The transmission of IP over SONET uses Point To Point (PPP) protocol for transport of 
packets.  This link provides a full duplex bi-directional operation.  The PPP protocol uses 
an HDLC-like framing for encapsulation, a Link Control Protocol (LCP), and Network 
Control Protocol (NCP). 

To establish communication over the link, each end must first send LCP packets to 
configure and test the link.  Once the link is established, each end may be requested to 
authenticate itself. 

Once the connection has been established, the NCP packets are sent to configure one or 
more of the network layer protocols.  When all of the network layer protocols have been 
configured, then datagrams from each network layer protocol can be sent over the link. 

The link will remain configured until a LCP or NCP packet is sent to close the link, an 
inactivity timer expires, or one of the systems shuts it down. 

The SONET POS PPP Negotiation software was designed and implemented according to 
RFC1332, RFC1619, RFC1661, RFC1662, and RFC2023. 
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The HDLC encapsulation fields are shown below. 

Flag 
0x7E 

Address 
0xFF 

Control 
0x03 

FCS 
Byte 1 

Protocol 
(see table below) 

FCS 
Byte 2 

FCS 
Byte 3 

FCS 
Byte 4 

Flag 
0x7E 

Padding 
* 

Data 
(up to MRU in size) 

The PPP Protocol Field Values are listed below. 
Value Description 

0x0001 Padding Protocol 
0x0021 Internet Protocol 
0x002d Van Jacobson Compressed TCP/IP      (may not be relevant) 
0x002f Van Jacobson Uncompressed TCP/IP  (may not be relevant) 
0x004f IP6 Header Compression 
0x8021 Internet Protocol Control Protocol (Network Control Protocol) 
0x804f IP6 Header Compression Protocol (Network Control Protocol) 
0xc021 Link Control Protocol 

Note:  Only Protocol field values relevant to IP over SONET are shown in this table.  Refer to RFC 1700 for other values. 

 

Link Control Protocol 

PPP uses Link Control Protocol or LCP, illustrated in Figure 6 and Figure 7, for allowing 
two links to establish operating parameters.  These parameters include encapsulation 
format options, size of packets, detecting loop back link, misconfiguration errors, 
establishing or terminating a link, authentication of the link, and determining when a link 
is operating correctly or failing. 

Dead 

Terminate 

Authenticate 

Network  

Establish Up Opened 

Fail Fail Down 

Closing 

Success 

Figure 6:  Link Control Protocol Flowchart 
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 0 

initial 

1 

starting 

2 

closed 

3 

stopped 

4 

closing 

5 

stopping 

6 

Req-sent 

7 

Ack-rcvd 

8 

Ack-sent 

9 

opened 

Up 2 irc, scr, 6 - - - - - - - - 

Down - - 0 tls, 1 0 1 1 1 1 tld, 1 

Open tls, 1 1 irc, scr, 6 3r 5r 5r 6 7 8 9r 

Close 0 tlf, 0 2 2 4 4 irc, str,  

4 

irc, str,  

4 

irc, str,  

4 

tld, irc, 

str, 4 

TO+ - - - - str, 4 str, 5 scr, 6 scr, 6 scr, 8 - 

TO- - - - - tlf, 2 tlf, 3 tlf, 3p tlf, 3p tlf, 3p - 

RCR+ - - sta, 2 irc, scr 

sca, 8 

4 5 sca, 8 sca, tlu, 

9 

sca, 8 tld, scr, 

sca, 8 

RCR- - - sta, 2 irc, scr, 

scn, 6 

4 5 scn, 6 scn, 7 scn, 6 tld, scr, 

scn, 6 

RCA - - sta, 2 sta, 3 4 5 irc, 7 scr, 6x irc, tlu, 

9 

tld, scr, 

6x 

RCN - - sta, 2 sta, 3 4 5 irc, scr, 

6 

scr, 6x irc, scr, 

8 

tld, scr, 

6x 

RTR - - sta, 2 sta, 3 sta, 4 sta, 5 sta, 6 sta, 6 sta, 6 tld, zrc, 

sta, 5 

RTA - - 2 3 tlf, 2 tlf, 3 6 6 8 tld, scr, 

6 

RUC - - scj, 2 scj, 3 scj, 4 scj, 5 scj, 6 scj, 7 scj, 8 scj, 9 

RXJ+ - - 2 3 4 5 6 6 8 9 

RXJ- - - tlf, 2 tlf, 3 tlf, 2 tlf, 3 tlf, 3 tlf, 3 tlf, 3 tld, irc, 

str, 5 

RXR - - 2 3 4 5 6 7 8 ser, 9 

Figure 7:  Link Control Protocol State MachineTable 
 

Definitions: 

EVENTS      ACTIONS 

UP = Lower layer is up    tlu = This layer up. 

Down = Lower layer is down   tld = This layer down. 

Open = Administrative Open   tls = This layer started. 

Close = Administrative Close   tlf = This layer finished. 

TO+ = Timeout with count > 0   irc = initialize restart count 
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TO- = Timeout with count expired   zrc = Zero restart count 

RCR+ = Receive configure request (good)  scr = Send configuration request 

RCR- = Receive configure request (bad) 

RCA = Receive configure ack   sca = Send configure ack 

RCN = Receive configure nak/rej   scn = send configure nak/rej 

RTR = Receive terminate request   str = send terminate request 

RTA = Receive terminate ack   sta = send terminate ack 

RUC = receive unknown code   scj = send code reject 

RXJ+ = receive protocol reject (permitted) 

RXJ- = receive protocol reject (catastrophic) 

RXR = receive echo request or reply  ser = send echo reply 

Network Control Protocol 

Network Control Protocol (NCP) packets configure the individual network protocols over 
PPP.  For Packet Over SONET (POS), PPP uses Internet Protocol Control Protocol (IPCP 
as stated in RFC 1332.  There are two configuration options that are valid: IP Address 
and IP Compression Control.  The NCP negotiation is performed after the LCP 
negotiation has completed.  Once the NCP negotiation is completed, then the data stream 
is enabled in the Transmit path. 

IP Address provides a way to negotiate the IP address on each end of the link.  It is used 
for either a configuration request or a request that the peer provides the information. 

IP Compression Protocol provides a way to negotiate the use of specific compression 
protocol.  The only compression method supported is the Van Jacobson Compressed 
TCP/IP protocol.  Default is no compression and was not implemented for the UNAS. 

PPP Negotiation Results 

The PPP Negotiation software was successfully implemented and debugged.  The UNAE 
software was tested by using an IXIA OC-48 tester, an Adtech OC-48 tester, a Juniper 
OC-48 router, and a Cisco OC-48 router.  In the case of the Juniper router, it was 
discovered the PPP Negotiation software would hang in the IPCP state.  It was 
determined that sending an IP address request to the Juniper router would not even 
generate a reply from the router.  This issue did not exist in the Cisco router or the OC-48 
testers.  The NGI team put a fix in the state machine to circumvent this problem due to 
the IP address from the IPCP message exchange is not used by the UNAS.  This change 
did not affect the operation of the PPP Negotiation on any other connection. 

Operating State 

The Operating State design consists of messages passed from the host to the UNAE card 
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to setup the system properly.  The message is a result of the user interaction to establish 
the correct operating state.  These messages will in turn cause a sequence of operations to 
be performed on the UNAE card, such as loading new PLD images and/or sequence of 
new hardware register values to establish a new operating state.  The User Interface and 
the hardware must match for correct operation and message passing.  An example is if 
POS is added to the receive path.  The POS PLD image will be loaded, new POS status 
information will be gathered in VxWorks, new POS messages will be sent between the 
User Interface and the UNAE card, and the POS User Interface will be displayed. 

System operation also includes protocol negotiation.  This will be an interaction with 
protocol messages for establishing the connection between the links.   The data stream for 
POS will not be sent until the PPP Negotiation has been completed.  Similarly, the data 
stream for Gigabit Ethernet will not be sent until Auto Negotiation has been completed. 

Software Updates 

The UNAS system is designed to allow easy software updates for user, field, or 
developmental updates.  This includes User Interface, NT Device Drivers, VxWorks 
Application Module, and Unasservice.   

Debug 
Each of the operating systems provides a method of accessing debug information 
allowing the development team to verify the system design.  Tools are written for the 
NGI program to allow access for hardware development as well as software 
development.   

Shutdown 

The UNAS system shut down by closing all shell windows and the UI.  The Device 
Driver can then be stopped at that point.  The UNAS is shut down using the Windows 
Start Menu similar to a PC running Windows. 

4.1.2.3 User Interface 

The User Interface (UI) is designed under the NGI program to allow the user to setup the 
system for correct operation and to display status information relevant to the selected 
protocol.  The operation of the User Interface is dynamic as the UNAS is configured.  
The User Interface, with more than one UI (local and remote), interacts with a common 
host device driver to send and receive messages to the individual UNAE cards.  Selection 
of a different protocol will require a new screen to appear and the correct status 
information to be displayed. 

The Windows NT User Interface resides on the host system to allow local unit setup.  
The User Interface status information is updated approximately once per second.  Visual 
C++ Version 6.0 is used to construct the User Interface components.   

The User Interface consists of several UI panels or “pages”.  Each protocol and data 
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encapsulation has a separate Tx/Rx page, which includes all setup and status information. 

Host User Interface Components 

The design of the UNAS User Interface for the NGI program set created some interesting 
challenges.  The first is how to display multiple modules on the User Interface clearly.  
The second challenge was the dynamic nature of each UNAE card to adapt to multiple 
protocols.  The implementation results are in the following sections. 

UNAE Module Selector 

The UNAE UI has a series of UNAE card icons along the left hand side for each UNAE 
module.  They allow the user to display the configuration and status for a selected 
module.  Each of the UNAE modules will have an icon and setup pages associated with 
it.  The icon displays the slot number the module is located in (for ease of physical 
connections) and the protocol the module is set to.  An example is one UNAE card 
configured as SMPTE 292 and the second UNAE card configured as SONET OC-48.  
The user will see two identical boards when attempting to physically connect the signals.  
The indicator will let the user know which board is configured as the SONET board and 
the slot number the module is in.  Clicking on an icon will display the setup and status for 
that module. 

Setup Page 

The first panel of the User Interface is the “Setup” page.  This panel is a tabbed page 
labeled “Setup”.  The Setup page allows the user to select the protocol for a UNAE card.  
The selection of a protocol on the configuration page causes the remaining UI pages to be 
“swapped” with the new selected protocol specific UI pages.   

The Setup tabbed page is always present in the UNAS system regardless of the protocols 
used.   

Protocol Specific UI Pages 

Each protocol has a specific page with all Tx setup parameters, Rx setup parameters, and 
status information such as LOS, bit errors, LOF, etc.  The following pages are written to 
support the UNAS: SONET (OC-3, OC-12, OC-48), Gigabit Ethernet, SMPTE292, 
SMPTE259, and PPP/HDLC.    

These protocol specific tabbed pages are dynamic in nature.  If the protocol is changed on 
the setup page, these protocol specific tabbed pages will be replaced with new one 
appropriate to the new selected protocol. 

Host UI Connection to Device Driver 

The host UI connects to the Device Driver with the Microsoft standard 
“DeviceIOControl” message.    

Remote User Interface 
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The User Interface also consists of a remote user interface to access the UNAS.  We 
implemented three remote UIs using HTML, Win 32, and JAVA.  Each of these remote 
UI designs had strengths and drawbacks.   

The HTML design could be used from any type of computer using Windows, LINUX, or 
UNIX.  However, HTML is always a request/send type of interface, where the UI is not 
updated unless requested by the user.  A “push” technology could be developed in the 
future for HTML to be useable for this type of application.   

The JAVA design could also be used from any type of computer running Windows, 
LINUX, or UNIX.  However, JAVA had two issues.  The first issue was initialization 
time of JAVA when used on a SUN workstation.  It took several minutes to load the 
JAVA libraries across the network to run the application.  The second issue was the tools 
used for the JAVA implementation only allowed a UI that had a “primitive” appearance 
rather than a more polished approach. 

The Win32 approach was not as portable to run on any type of computer, only on 
computers running Windows.  However, the strength of recompiling the existing User 
Interface for remote operation, allowing the unit to be run exactly the same as the host, 
was important.  The conclusion is that most installations would have access to a PC 
running Windows, so the portability issue became small.  This is the approach taken by 
the NGI Team. 

Remote UI Connection to the Device Driver 

The host UI connects to the Device Driver with an internally developed 
“NGIServer.DoCommand” message.   This message will communicate with an 
application running on the host, which listens to a socket interface for messages from the 
remote UI.  The application running on the host is “Unasservice.exe”.  The messages 
received from the remote UI will be in the form of “NGIServer.DoCommand” calls and 
the application will convert them into “DeviceIOControl” calls and send them to the 
Device Driver. 

The remote UI will prompt the user for an IP address and port number to connect to.  
Once it is connected, it will appear exactly the same as the host UI. 

Client and Server Programs 

This program includes UnasService.exe and UnasRemoteClient.exe files. 
UnasService.exe is a DCOM server providing the service to UnasRemoteClient.exe. 
UnasService.exe can be running on the same or different machine from 
UnasRemoteClient.exe. The functionality of UnasService.exe is to deliver the request 
from UnasRemoteClient.exe to NT device driver and the output of device driver to the 
remote client. 

The primary purpose of UnasRemoteClient.exe is to graphically display the real-time 
activity of UNAE devices received from UnasService.exe. The connection between 
UnasService.exe and UnasRemoteClient.exe is via DCOM protocol. The UnasService 
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proxy/stub object makes the DCOM protocol work. The proxy ensures that parameters 
are correctly marshaled across the process of apartment boundary and initiates the RPC 
calls; while the stub ensures that stack is correctly constructed with the un-marshaled 
parameters sent by the proxy, and that the method is called. COM/DCOM is built on the 
top of RPC. Any fancy features are realized in the RPC functions.  

NGI Web program 

The NGI Web program includes NGIWeb.dll (ActiveX controls) and NGIWebExt.dll 
(ISAPI extension) files. NGIWeb.dll works in the same workspace of Internet Explorer. 
NGIWebExt.dll works in the same workspace of NT web server, such as IIS 4.0 in this 
program. When Internet Explorer opens a page with ActiveX control object embedded, it 
will download and register the object to the local machine, so how to maintain the 
continuous communication between the ActiveX control and the NGI devices is critical 
to this program. I finally come out an idea with ISAPI extension. For each request from 
web browser (actually from ActiveX control), the request will be routed to ISAPI 
extension (NGIWebExt.dll) residing on IIS web server. The ISAPI extension has every 
method that the ActiveX control may need. It handles all requests from ActiveX controls 
based on the format and content of query string it received. 

NGIWebExt.dll is a web server extension written in VC++ with MFC library. Basically, 
when NGIWebExt.dll receives a request, it will deliver the request to the device driver by 
calling DeviceIoControl() system method and get corresponding output from the device 
driver. The ISAPI extension writes the output into HTML standard stream in a certain 
format. At the meantime, the program also writes the error message into Application Log 
file if error occurs.  

NGIWeb.dll is written in Visual C++ 6.0 with Active Template Library (ATL) and 
Microsoft Foundation Class (MFC). The ActiveX control is the COM object with GUI 
features. The NGI Web program has 10 ActiveX controls (Figure 8 Remote User 
Interface using DCOMS). All controls are ATL Lite Composite Controls with MFC 
enabled. NGI_MAIN_DLG control is the main control and hosts the other 9 controls that 
are dynamically loaded and displayed by NGI_MAIN_DLG at run time. A timer is used 
to continuously update NGI Web display. The timer is set in NGI_MAIN_DLG control 
and passed into other 9 controls via the interface method.  
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Figure 8 Remote User Interface using DCOMS 

Limitations of Client Server Model 

The programs are developed with Visual Studio 6.0 on Windows NT 4.0 platform.  

1). The programs are developed to support our NGI development team. It does not 
consider connecting an UNAS outside of Tektronix and another inside Tektronix. The 
client/server program will not be able to pass the firewall and web proxy unless the 
proper configurations have been performed on the Tektronix network. The NGI web 
program is capable of running outside of Tektronix, but authentication through the 
Tektronix firewall must be verified in advance.  

2). Both programs require that user have administrator right or ability to edit system 
registry on both client and server machines.  

3). The program must run on a Windows platform. Windows NT 4.0, 98 or above is 
preferred. The Internet Explorer 4.0 or above is required for NGI Web program. 

4.1.3 System Software build environments 
The UNAS system software system consists of several build environments to put together 
the complete UNAS software system.  Each of the software build environments was 
constructed for the NGI program to build the UNAS software system.  Each software 
build environment will be described in the following sections. 

4.1.3.1 VxWorks Core Operating System 

The VxWorks core operating system is built using VxWorks 5.2 for the Intel I960 
microprocessor.  The image is built from the full source code.  There were some 
modifications to the base operating as sent from Wind River.  The first modification is to 
the messaging system, enabling the commands for DMA load of a VxWorks module and 
to start it.  The second modification is the redirection of the shell commands through the 
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RS232 port on board or through the mailbox registers in the I960 microprocessor to use 
with the “shell” popup window.  A jumper placed in the RS232 port on the UNAE card 
indicates to the software which of these two paths to use.  The installed jumper indicates 
use of the “mailbox” registers and the jumper not installed will use the RS232 connector.  
The path used for the “shell” commands is within the main interrupt system of the 
operating system itself, which is why the core had to be modified rather than including it 
in the VxWorks Application Module.  

There is not any UNAS system information contained in this image.  This image is placed 
into the FLASH ROM by use of the “VxWorks Loader” described below.   

4.1.3.2 VxWorks Application Module 

The VxWorks Application Module is described earlier in this document.  It contains all 
of the FPGA images for all the protocols, messages for UNAS, hardware specific drivers, 
control software, PPP negotiation, Gigabit Ethernet auto-negotiation, hardware state 
information, protocol switching, etc.  This module is built by the hardware or software 
team to test new functionality, either in the FPGA images or the software itself.  This 
module is located on the NT controller hard disk and is loaded by the NT driver into the 
NT controller local memory.  The VxWorks core operating system then performs a DMA 
operation of the image into the dynamic RAM located on the UNAE board.  The 
VxWorks core operating system then dynamically links the module to the core OS. 

4.1.3.3 VxWorks Loader Image 

The VxWorks Loader Image, along with the VxWorks Loader Utilities, solves the 
problem of putting the VxWorks Core OS into FLASH ROM.  A new UNAE board will 
not have any FLASH image and therefore the I960 will not boot up.  To solve this 
problem, the first step is to create an executable image to burn the VxWorks OS into 
FLASH ROM.  This executable image is also a version of VxWorks that will be loaded 
and run.  The VxWorks Loader Image is essentially a VxWorks OS “wrapper” with the 
VxWorks Core OS (to be placed in FLASH ROM) embedded into it.  This “wrapper” 
image differs from the core in PCI bus address translations, messaging system, etc. 

The VxWorks Loader Image is placed into and executed from dynamic RAM on the 
UNAE card.  The size of this “double” image is approximately 4.5 Megabytes. Once 
executed, it will check the FLASH ROM, erase it if necessary, and then “burn” the new 
image into the FLASH ROM.  The task of placing this Loader Image is performed by the 
VxWorks Loader Utilities. 

There is not any UNAS system information contained in this image.  This image is used 
to burn VxWorks Core OS into the FLASH ROM .   

4.1.3.4 VxWorks Loader Utilities Using Cyclone Chassis 

The VxWorks Loader Image is built and ready to be placed in a new UNAE board.  The 
VxWorks Loader Utilities run on a “Cyclone” chassis, which is a motherboard 
manufactured by Cyclone Microsystems.  This chassis has several PCI slots and runs 
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VxWorks.  This VxWorks image is different from the other VxWorks images discussed 
so far.  There are utilities included on this host to provide access to the PCI slots for 
programming the image. 

The first step is to use an adapter for Compact-PCI to standard PCI to place the board in 
the Cyclone chassis.  There are switches on the UNAE card that control the 
microprocessor.  There are two modes we use on the UNAE:  the first mode is Mode 3, 
which allows the microprocessor to boot normally from the FLASH ROM, and Mode 0, 
which places the microprocessor in HALT mode.  The UNAE is set to Mode 0 with the 
switch settings and placed in the Cyclone chassis.  The utilities will first program the 
I960 processor for memory maps, bridge settings, dynamic RAM controller settings, etc.  
Essentially, this is a “boot strap” process of initializing the I960 system through PCI bus 
“peek and pokes”.  Once this is done, the VxWorks Loader Image (the double VxWorks 
image) is now loaded into dynamic RAM on the UNAE board using the “peek and poke” 
method.  Once the image is loaded into dynamic RAM, a “jump vector” is given to the 
I960 and the processor is then enabled to run (through a software command).  This causes 
the VxWorks program to execute and “burn” the core OS into FLASH ROM. 

There is a major issue that had to be overcome with this approach.  The issue is the way 
the I960 appears on the PCI bus.  The PCI registers for the default I960 configuration 
indicates the I960 is a bridge device and these registers cannot be changed to make it a 
different device.  The setting for the PCI bus address window size is 64K bytes in size.  
This does not allow the software to pass a 4.5 Megabyte image through this window.  On 
the Compact-PCI mainframe, the operating system is Windows NT 4.0.  Windows NT 
scans the PCI bus at boot time and creates a table for the capabilities of the PCI devices 
on the bus.  Once this table is made, it cannot be changed.  This eliminated the use of 
programming the FLASH ROM on the Compact-PCI platform running Windows NT.  
Using the Cyclone chassis, the PCI slots are allocated larger blocks of memory, 
especially if there are no adjacent cards.  This allowed the UNAS software team to 
program the UNAE cards.  The drawback and risk is that there is only one Cyclone 
mainframe working at Tektronix.  

There is not any UNAS system information contained in the utilities.  The utilities are 
used to load the VxWorks Loader Image into the UNAE dynamic RAM .   

4.1.3.5 VxWorks Loader Utilities Using LINUX 

The UNAE cards have their FLASH ROM programmed using the VxWorks Loader 
Utilities run on a “Cyclone” chassis.  The issue with the Cyclone chassis is that there is 
only one of them working at Tektronix.  To eliminate the risk to the program, we 
developed an alternative to the Cyclone chassis.  This is a regular PC running Linux with 
some modifications.  The first is the VxWorks Loader Utilities were ported from 
VxWorks to the LINUX operating system.  The second was reserving approximately 6 
Megabytes of memory in the PC (outside what LINUX thought the memory space is) and 
then setting the PCI bus to use this address space, essentially creating a mapped window 
into the PCI bus.  The program was then able to load the VxWorks Loader Image into the 
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UNAE dynamic RAM and execute the utilities. 

There is not any UNAS system information contained in the utilities.  The utilities are 
used to load the VxWorks Loader Image into the UNAE dynamic RAM  

4.1.3.6 Windows NT Device Driver 

The Windows NT 4.0 Device Driver is built using the Microsoft Device Driver Kit 
(DDK) and Microsoft Software Development Kit (SDK) packages.  The final built image 
is “unas.sys”. 

4.1.3.7 Windows NT User Interface 

The Windows User Interface is built using Visual Studio C++ 5.0 or better.  The file 
image for the User Interface is “NGI.exe”. 

4.1.3.8 Windows NT Remote User Interface 

The Windows Remote User Interface is built using Visual Studio C++ 5.0 or better. 

4.1.3.9 UNAS Service Task 

The UNAS Service Task is started on the host platform to provide the connection for the 
remote User Interface to operate.  It takes the commands from the remote UI and 
translates them into NT Device Driver calls.  This is started from the Windows 
“Services” dialog box.  The image file is called “unasservice.exe” and is compiled using 
Visual Studio C++ 5.0 or better. 

4.2 BRAD ASIC 

4.2.1 Design objectives 
The BRAD is intended for fiber optics communications applications. On the receive side, 
the BRAD accepts a serial data input stream, recovers clock and data, and demultiplexes 
it. On the transmit side, the BRAD accepts data from a parallel interface and multiplexes 
it into a serial output stream. The BRAD generates clocks for serial and parallel data 
outputs, and clocks the parallel input. 

The project was undertaken to provide these features not generally available in 
commercial transceiver components for optical communications: 

1. Burst mode allows the receiver to instantly start acquiring data, without losing a 
single bit, when a new transmission starts, using known protocol. Most receivers 
have phase locked loop (PLL) clock recovery circuits, which need a lock-in 
period before data can be acquired. 

2. Bit rate agile transmitter and receiver clock circuits. Clocks may be programmed 
to any serial rate from 150 Mb/s to 3 Gb/s. 

3. Programmable parallel word widths of 8, 10, 16, 20 and 32 in receiver and 
transmitter serial-to-parallel and parallel-to-serial converters, in order to 
accommodate multiple protocols. 
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4. A receiver transition counter helps estimate the bit rate of a received data of 
unknown protocol. 

4.2.2 Summary of Work 

4.2.2.1 CMOS feasibility study 

It was the objective of a short design study to verify feasibility of realization of the 
BRAD design using CMOS technology. The ASIC Advanced Development Group at 
Tektronix has world class design skills, particularly in analog and high speed digital such 
as global clocks. A senior engineer addressed the problem assuming CMOS processes 
available to Tektronix at the time and for which well developed models were available. A 
0.25u process from IBM was well understood while models for a 0.18u process from 
National Semiconductor were being integrated into the design group. Models for these 
two processes were used for simulations. 

According to the SONET specification, the longest data pattern without transitions is 384 
bits (following the A1A2 bytes, no scrambling). The technical challenge addressed was to 
maintain low enough jitter to perform clock and data recovery of 384 bits at 3Gbps. Burst 
capture was not optimized in this study.  

Traditionally CMOS devices are used in a lower range of frequencies than Bipolar: Low 
surface mobility of carriers and high gate capacitance contribute to a relatively slow RC 
time. Parameter variations between adjacent devices complicate use of CMOS in analog 
applications. High gate capacitances and full CMOS voltage swing of operation create 
noise on power, ground and substrate, generating signal jitter. The combined effect 
determines maximum data rate of a data acquisition system. Several circuit types were 
considered for the fast receiver front end, including: 

• A three-oscillator circuit (one VCO and two gated VCO’s – GVCO’s) proposed 
by Banuiv 

• Addition to this of a phase-correction circuit to reduce jitter uncertainty using a 
pulse-gated receiver (PGVCO’s) 

• Interleaved receiver using two PGVCO’s and no master VCO 
• Receiver with oversampling by 4 

Conclusions were that a 3Gbps non-oversampling receiver can be built with margin on 
0.18u CMOS process. It was supposed that the most efficient architecture is interleaved 
PGVCO with a phase error correction circuit. Existing data indicated that 3Gbit/s over-
sampling by 4 receiver with phase correction can be built on .25u CMOS process. Over 
3GHz bandwidth for a transmitter can be achieved on either process by combining DLL 
(delay locked loop) and oscillator - based output stages. These conclusions were drawn 
with limited experience with the accuracy of 0.18u models at the time. 

4.2.2.2 Use of Silicon-Germanium Bi-CMOS process 

The maximum bit rate of 3 Gb/s is right at the upper end of what the present CMOS 
processing capability can be expected to handle. In order to operate at this speed, CMOS 
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circuits usually need a fair amount of tuning and delay compensation. While this might 
have worked well at any one fixed bit rate, it was felt that it would be risky, given the 
variable bit rate requirement of this project. In addition, the BRAD was at the time 
considered to be a gating element in the system. If the CMOS version did not perform at 
at least 2.5Gbps the remainder of the system would not operate. This is why a SiGe 
hetero-junction bi-polar process was chosen. 

The combination of the Burst mode and Bit Rate Agile features required development of 
a new approach for the receiver. The voltage controlled oscillator (VCO) and clock 
recovery circuit (CDR) described below made these features possible. 

4.2.2.3 VCO 

The VCO is a ring oscillator of two ECL delay elements with programmable delay, and 
inverting feedback. Each delay element uses a string of buffer delays, and interpolates 
between taps in an analog fashion to include 0-2 buffer delays, plus the single buffer 
delay of the pick-off. The oscillation period is thus four element delays, and the outputs 
of the two buffers provide two versions of the clock, with one-quarter period phase 
difference, as required by the CDR. The programmable delay allows one octave of clock 
programmability, about 1.6-3.2 GHz. Two version of this oscillator are used, to insure the 
full octave of coverage, with temperature and production variations. In this frequency 
range the oscillator outputs are used directly. D flip-flop binary dividers with master and 
slave outputs are used to provide the two phase outputs at all lower frequencies. Division 
by 2, 4, 8 or 16 provides continuous frequency coverage down to below 150 Mb/s, as 
required. Finally a divided-by-32 clock is phase locked to the external frequency 
reference. The reference frequency of 1/32nd of the oscillator, together with the 
programmable binary ratio, defines the frequency of the receiver CDR. An similar clock 
generator provides the transmitter clock, although the transmitter clock does not need the 
two-phase outputs. 

A simplified concept of the circuit is illustrated Figure 9. More detailed schematics for 
both long delay and short delay versions have been previously provided in quarterly 
reports. 

The differential control voltage input is applied to the input terminals ‘pfreq’ and ‘nfreq’ 
while the center pin ‘cfreq’ is kept at the common mode average between the two. As the 
voltage is varied the currents in transistors Qleft, Qcenter and Qright vary as illustrated 
inFigure 10. The output is thus the sum of proportioned signals with 0-1-2 buffer delays. 

 

 51 



 

 
 

Figure 9  VCO for phase locked loop (PLL) 

Figure 11 shows the two-phase output of an oscillator versus control voltage swept with  

time. The active range is from 3 to 8 nS. 

 
Figure 10 Transistor tail currents in VCO. a = Qright; b = Qcenter; c = Qright 

 
Figure 10 illustrates the tail currents in transistors Qleft, Qcenter, and Qright of Figure 
9a, as the control voltage is swept with time as in the Figure above. The active range is 
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from 3 to 8 nS. 

 
Figure 11 Two phase VCO output. a = phase 2; b = phase 1; c = control voltage 

 

CDR- Key Feature for Burst Mode Bit Rate Agility 

Instant acquisition burst mode required a new clock and data recovery approach. A 
different CMOS approach was investigated first, but at the high 3 Gb/s data rate it was 
felt that a high performance bipolar process was safer. It was implemented using the IBM 
SiGe process and cell library developed by the High Frequency Design group at 
Tektronix. See technical details below. 

Simulation results demonstrate instant burst mode clock recovery and glitch free phase 
correction of the recovered clock as the phase of the input signal slowly drifts with 
respect to the local VCO clock. 

The basic block diagram is shown in Figure 12. It is thought to be a low risk approach, as 
it is built almost entirely from standard digital building blocks. The only exception is the 
tunable voltage controlled oscillator, VCO in the phase locked loop. Even the VCO is 
built as a ring oscillator from emitter coupled logic buffers, but of necessity has a tunable 
analog feature, which makes it a non-standard cell. In order to guarantee the full one 
octave tuning range at all temperatures, and for all production variations, two VCO’s are 
used. A standard 2:1 multiplex switch is used, under software control, to select which 
oscillator is used at any one frequency. 
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Figure 12  BRAD Clock Recovery Circuit. RXDI = Signal input; RX_DSS = Reference frequency 

input; C = Recovered clock output; D = Recovered data output 

The RX_DSS input controls the frequency of the VCO via the phase locked loop, PLL. 
The VCO, a two stage ring oscillator, has two differential outputs in quadrature phase, P1 
and P2. Two more phases, P3 and P4 are implied as the inverse of these.  

The two VCO outputs, P1 and P2, are sampled by the two flip-flops, clocked by 
transitions of the input signal RXDI. The samples are held as Q1 and Q2. The two flip-
flops should ideally be clocked on all positive and negative edges to extract all available 
timing information from the input, although this is not required. It is possible to use only 
positive edges, or only negative edges. The present design uses all positive and negative 
edges.  

The samples, Q1 and Q2, define how the input signal phase is related to the phases P1 – 
P4, as illustrated to the right of VCO in Figure 12. The “1”s and “0”s on the P1 and P2 
waveforms are the values of Q1 and Q2 if sampled during that time.  

The CLOCK PHASE SELECT circuit uses Q1 and Q2 to select the clock phase, of P1-
P4, which fits the timing of the input transition best. That phase now becomes clock C.  

If the VCO is perfectly matched in frequency to the input signal clock frequency, the 
selected phase will not change. When there is a mismatch, the selected phase will cycle 
1-4 over and over again, either backwards or forwards, at the beat frequency of the VCO 
versus the input signal. It is therefore a requirement that the VCO must match the 
incoming data rate well enough that it drifts less than one-quarter cycle during the longest 
period of no transitions of the input signal. In SONET OC-48 this could be the 384 UI 
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immediately following the A1A2 framing signal. These 384 bits are still unscrambled, 
and the content is uncertain. Thus, the VCO frequency must match incoming data rate 
better than 1/1546, i.e., about 500 ppm. Reference oscillators sold for SONET 
applications meet this requirement. 

The CLOCK PHASE SELECT circuit is designed to interpolate between adjacent phases 
if there is meta-stability in either Q1 or Q2, in order to make it meta-stable proof. The 
circuit tolerates that one or the other is in a meta-stable condition, but never both at the 
same time. 

When there is a clock phase change, the circuit is designed to change during a time when 
the new phase is equal to the old phase in order to avoid generating glitches. 

The jitter of the recovered clock will have a peak-to-peak value of 0.25 UI due to the 
phase select circuit. While this would have been a problem if the recovered clock were to 
be retransmitted as a line protocol clock, the recovered clock is only used internally to 
recover the data. As long as the data is correctly recovered, the jitter of the clock is not a 
concern. 

Note that the PLL and VCO are the only tunable or analog components in this approach. 
The tunable frequency range is <1.5 GHz to >3 GHz, i.e. greater than 2:1. All lower input 
clock frequencies will be divided down from this frequency. 

The circuit represented by the building blocks in Figure 12 was simulated in ADS, our in-
house version of SPICE with schematic capture. All circuits were designed at the 
transistor level using minimum geometry transistors and “presrp” resistors in the IBM 
SiGe process. Standard ECL implementations were used for each block. The current trees 
used 0.5 mA standing current, as did the emitter follower pull-downs. The waveforms in 
Figure 11 demonstrate that the recovered clock is changing phase as necessary in a glitch 
free manner. From 0 to 5 nS the local oscillator is running slightly slower than the input 
signal frequency, and from 5-10 nS it is faster. Note the phase corrections in the 
recovered clock as it drifts relative to the input signal. 

The waveforms in Figure 13 demonstrate feasibility of the concept. In trace a, VCO is too 
slow 0-5 nS, and too fast 5-10 nS. Hence the adjustments. In b, the recovered clock note 
short cycles at 1.8, 3.8 and 5.4 nS, and long cycles at 5.8, 7.4 and 9.4 nS. Each 
immediately follows a change in Q1 or Q2.  
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Figure 13 Glitch-less Clock recovery demonstrated. a = VCO control voltage; b = Recovered clock;  c 
= Phase-select bit Q1; d = Input signal; e = Phase-select bit Q2 

 

Serial-to-Parallel and Parallel-to-Serial converters 

Parallel word widths are programmable to 8, 10, 16, 20 and 32. It would have been 
simple to use 1x32 bit serial-parallel shift registers for these, with programmable dividers 
to control the parallel shifts at the required intervals. However, at the highest speeds it 
would have been difficult to guarantee clock-data timing over the length of the shift 
register when doing the parallel shift on the fly. The circuits used have shorter shift 
registers, and therefore easier to maintain clock-to-data timing. The reader should find the 
circuits simple and straightforward to understand if the control register section of the 
specification and the ADS schematics are studied side by side.  

4.2.2.4 Limitation of design 

The CDR used in the BRAD was selected because it is capable of instantly recovering 
Clock and Data in known data rate burst mode, without a lock-in period. This capability 
comes at a price.  

The recovered clock will have 0.25 U.I of jitter added to the incoming jitter by the ¼ 
cycle phase selection feature of the CDR. This is acceptable in the intended application, 
because the clock is only used to recover data and to generate the lower rate parallel 
clocks. However, this method of clock and data recovery would not be acceptable if the 
recovered clock were to be used to re-transmit SONET signals, for example. The addition 
of 0.25 U.I. of jitter would violate jitter transmit specifications.  

If it were necessary to use the recovered clock as a re-transmitted SONET (or other 
protocol) clock, there would be a couple of options. The simplest one is to use the 
recovered clock as a reference for a phase locked loop with limited loop bandwidth. The 
bandwidth has to be low enough to limit jitter to within the specifications for the protocol 
in question. The line loop-back in the BRAD uses such a feature. The transmit clock in 
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line loop-back is referenced to the recovered clock via a phase-locked loop. If the instant-
lock and re-transmit feature is required, a more complicated method is possible. In Figure 
12, the VCO would be producing sine and cosine waves instead of square waves ¼ cycle 
apart, analog track and hold circuits would replace the flip-flops to determine Q1 and Q2, 
two four quadrant multipliers would replace the 4:1 multiplexer, and finally a difference 
amplifier would subtract the outputs of the two multiplier outputs. 

4.2.3 Results 
The following are characteristics of the BRAD design.  

The BRAD is intended for fiber optics communications applications.  

On the receive side, the BRAD accepts a serial data input stream, recovers clock and 
data, and demultiplexes it. On the transmit side, the BRAD accepts data from a parallel 
interface and multiplexes it into a serial output stream.  

The BRAD generates clocks for serial and parallel data outputs, and clocks the parallel 
input. 

The receiver and transmitter operate independent from each other at any frequency from 
150 MHz to 3 GHz.  Multiplex and de-multiplex ratios are independently programmable 
to 8, 10, 16, 20 or 32. There is a transition counter to estimate data rate of received 
signals of unknown protocol for setting the initial frequency of the clock recovery circuit.   

The Clock and Data Recovery in the receiver will recover a burst data of a known rate 
without losing any initial data while locking in. 

Loop-back is built into the BRAD in both directions. Loop-back in each direction may be 
used or not used independent of the other. 

The control registers have separate resets for receiver and transmitter circuits. This allows 
one to be reset while the other is passing payload, without disturbing it.  

The BRAD design was completed through preliminary layout, including placement of 
circuit blocks and simulation of all analogue and high speed subcircuits. Performance at 
3+Gbps was clearly realizable. The BRAD development was frozen at that point, due to 
growth of both NRE costs and schedule for completion. 

4.2.4 Conclusions 
The goal of the BRAD design was to achieve several features not generally available in 
commercial communications chips: 

1. Burst mode allows the receiver to instantly start acquiring data, without losing a 
single bit, when a new transmission starts, using known protocol. Most receivers 
have phase locked loop (PLL) clock recovery circuits, which need a lock-in 
period before data can be acquired. 

2. Bit rate agile transmitter and receiver clock circuits.  Clocks may be 
programmed to any serial rate from 150 Mb/s to 3 Gb/s. 
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3. Programmable parallel word widths of 8, 10, 16, 20 and 32 in receiver and 
transmitter serial-to-parallel and parallel-to-serial converters, in order to 
accommodate multiple protocols. 

4. A receiver transition counter helps estimate the bit rate of received data of an 
unknown protocol. 

The present design includes all four features. It is significant that, had this ASIC been 
realized on the intended time schedule, it would have been to the authors’ knowledge, the 
first 2.5Gbps burst receiver that recovered both clock and data with no loss of data. In 
addition, simulations have shown that the front-end design is scalable to 10Gbps (with 
additional design effort for performance). 

In addition, although the CMOS approach did pose significant risk, the cost of 
completing the CMOS design would have been more in line with program resources. The 
decision to use SiGE for the BRAD was based substantially on a plan to use a very 
economical multi-project SiGe fabrication option with the foundry. When this option was 
withdrawn, the fabrication cost became a major factor.  

In retrospect, the risk of the CMOS approach failing due to performance would have been 
manageable, since a substitute multirate (albeit not continuously variable rate) 
commercial CDR ASIC was found that allows SONET OC-3, OC-12, OC-48 and Gigabit 
Ethernet transceiver functions. 

The decision not to complete the design/fabrication/test/package/characterize process for 
the BRAD also impacted other elements of implementing the multiprotocol UNAE as 
planned. The proposed architecture would support two Gigabit Ethernet clock rates 
(1000Mbps and 1250Mbps due to 8B/10B coding) and also multirate SONET clocks 
(multiples of 155.25Mbps) in the same optical mezzanine board. The SONET clocks are 
not multiples of GbE clocks. This fact led to a redesign of the optical mezzanine board to 
include two local oscillators and substantial clock selection and distribution code in a 
large FPGA. Details are presented in the Summary of Work section for Gigabit Ethernet. 

The BRAD was also the critical element in the plan for the UNAE to discover protocols, 
since the BRAD could communicate the exact input bit rate to the rest of the system. 
Without the BRAD the protocol discovery is disable Mezzanine boards 

4.2.5 Design objectives 
The optical mezzanine provides a physical layer interface for the UNAE system when it 
is transmitting packets using SONET or Gigabit Ethernet (GbE) protocols. The optical 
mezzanine attaches to the UNAE main board via the standard mezzanine connectors. The 
circuitry contained on the optical mezzanine provides the functions of electrical to optical 
signal conversion, clock and data recovery, serialization / deserialization, signal level 
conversion, data bus bit width conversion, and Gigabit Ethernet specific physical medium 
attachment functions. Additionally, for interfacing to an optical router, an electrical 
interface is provided. 

The video mezzanine uses commercial chips to provide serialization and deserialization 
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and framing functions for either high definition (HD) or standard (SD) digital video. The 
receive side provides frame delineation for SDI data and the transmit side multiplexes a 
ten or 20 bit data stream and adds SDI frame boundaries. 

4.2.6 Optical mezzanine summary of work 

4.2.6.1 Board architecture 

Two functional versions of the optical mezzanine board were built. The first, g2469xb, 
had much the same design as the later card, but had no clock oscillator built onto the 
board (reference clocks for the optical input/output were generated by the clock synthesis 
chips DDS1 and DDS2 on the UNAE board and passed up to the mezzanine. It was later 
discovered that these clocks did not have low enough jitter for SONET interfaces, and a 
SONET clock oscillator was retrofitted to the board. The second version of the board, 
g2469xc, included two selectable clock oscillators for SONET (155.52 MHz) and GbE 
(156.25 MHz). The second version of the board also contained a much larger FPGA with 
sufficient resources to implement the GbE Physical Medium Attachment / Physical 
Coding Sublayer (PMA/PCS) logic and additional external connections for an all-optical 
router packet label. An addressable processor bus was also extended up to the mezzanine. 

A block diagram of the components on the optical mezzanine are shown in Figure 14 
below. Network inputs and outputs on the left side of the diagram are switchable between 
electrical and optical ports. Optical ports are 1.3 µm single modes SC connectors and 
electrical ports are single-ended PECL AC-coupled to SMA connectors. Data rates 
through this interface are 155.52/622.08/1250/2488.32 Mb/s, selected via RATESEL 
control signals to the AMCC SERDES chip. 
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Figure 14 Diagram of optical mezzanine components and connections 

.2.6.2 PMA/POS FPGA design 

he PMA FPGA located on the optical mezzanine provides data path conversion 
nctions when operating in a SONET mode. In the receive direction, the FPGA converts 
e 16-bit wide LVPECL data bus into a 32-bit wide LVTTL bus for transmission across 
e mezzanine connector to the Framer FPGA on the UNAE main board. A divide by two 

ersion of the receive clock is also provided to the UNAE main board. Likewise in the 
ansmit direction, the PMA FPGA accepts the 32-bit LVTTL data bus from the Framer 
PGA, and converts this to a 16-bit LVPECL bus to be driven to the S3057. The transmit 
lock is taken from the PCLKP/PCLKN output of the S3057, divided by two, and driven 
own to the UNAE main board, which then distributes this as the transmit data path 
lock.  

he data bus width and signal level conversion functions described above are provided 
y the PMA FPGA whether in a SONET or in a Gigabit Ethernet mode (clocking is 
andled slightly differently). In order to support Gigabit Ethernet operation, however, 
dditional data path and clock functions are required.  The mode selection determines 
hether the additional data path functions are bypassed (in a SONET mode), and 
etermines which of the transmit and receive clocks (a simple divide by 2 for SONET, or 
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an internally synthesized derivative of the original clocks for Gigabit Ethernet) is passed 
on to the UNAE.  

The Gigabit Ethernet mode of operation requires the use of 8B/10B encoding for the 
Physical Coding Sub-layer. In order to support this mode of operation, the PMA FPGA 
must, in addition to the 8B/10B encoder and decoder, perform the necessary path width 
and clock rate conversion for exchange of 4 (8-bit) words at a time on the mezzanine 
interface, and exchanging 10-bit code words 16 bits at a time at the S3057 data interface. 
Because of the 25% overhead involved with the Gigabit Ethernet PCS function, the line 
rate is 1250Mbps. This means that the 16-bit interface to the S3057 will operate at 
78.125MHz. Both sides of the 8B/10B encoding function operate at 125MHz (resulting in 
1000Mbps/1250Mbps). This clock frequency is an 8/5 multiple of the 78.125MHz clocks 
provided by the S3057, and must be synthesized internally by the FPGA. This is 
accomplished by utilizing the DCM frequency synthesis features found in the Xilinx 
Virtex2 parts. Additionally, because of the non-integer multiple nature of the 8/5 clock 
multiplication, the two sections of the data paths must be treated as separate clock 
domains. Crossing the boundary between these domains, as well as providing an 8B/10B 
path width conversion, is a pair (transmit and receive) of FIFO’s.  

For a more detailed description of the functions of the PMA FPGA, refer to the “PMA 
FPGA Design Specification” in the Appendix. In support of the CDR, the RATESEL 
lines controlling the line rate for the Transceiver are also brought into the PMA FPGA. 
These are the decoded to provide the proper BAND_SEL value used to control the CDR. 

4.2.6.3 UNAE interface 

Three 80-pin mezzanine connectors provide the interface to the UNAE main board. The 
signals comprising this interface fall into four categories: transmit data, receive data, 
control signals, and clock signals. The transmit and receive data busses are both 32-bits 
wide, and carry data between the PMA Framer FPGA’s.  The control signals are a group 
of signals between the mezzanine hardware and the Framer FPGA’s, which provide 
various control, configuration, and monitoring functions. Each of these signals’ direction 
and (when not drive by mezzanine HW) state is controlled by the mezzanine Control 
Registers within the Framer.  In general, the CTL<16:0> signals interface directly with 
the Transceiver and CDR IC’s, and the CTL<29:17> interface directly with the PMA. 
The clock signals are: CCLK, CLK78, TCLK, and RCLK. CCLK provides the 
configuration clock for the PMA FPGA. The TCLK and RCLK are the transmit and 
receive clocks respectively, and are both driven from the PMA FPGA to the UNAE main 
board, where they are distributed as the data path clocks. These clocks will run at 
77.76MHz for SONET OC-48 operation, and at 31.25MHz for Gigabit Ethernet 
operation. The CLK78 signal is used as the REFCLK input for the S3057. In the event 
that a single crystal oscillator can be used for multiple data rate functions with the new 
CDR chip, this clock  
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4.2.7 Video mezzanine summary of work 

4.2.7.1 HD video mezzanines 

Two separate mezzanine cards for SMPTE 292M uncompressed high definition video 
transport were previously built by Tektronix as part of an HD video over ATM project. 
These mezzanine cards, an HDIN video deserializer and HDOUT video serializer, were 
used with minor changes for this project. Modifications were necessary to make the 
outputs from the 5 V boards compatible with the 3.3 V FPGAs on the UNAE. The cards 
each use one of the 80-pin mezzanine connectors discussed above for the optical 
mezzanine. 

1. Changes to the HDIN mezzanine (u0393xa) are as follows: 
2. Add 100 ohms series resistors to board ID outputs to limit input current to the 

UNAE. 
3. Remove power to the “silicon serial number” chip. 
4. Add 100 ohm series resistor to lock indication output to limit input current to the 

UNAE. 
5. Change pullup on board ID chip select from 5 V to 3.7 V. 
6. Disconnect SEL1 input. 
7. Put limiting diode to 3.3 V on FFIN input. 
8. Disconnect PAR output. 

 
9. Changes to the HDOUT mezzanine (u0392xa) are as follows: 
10. Add 100 ohms series resistors to board ID outputs to limit input current to the 

UNAE. 
11. Remove power to the “silicon serial number” chip. 
12. Connect the clock input from the UNAE board to the mezzanine clock output line 

through a 39 ohm series resistor. 
13. Change pullup on board ID chip select from 5 V to 3.7 V. 

4.2.7.2 SD video mezzanines 

Two separate mezzanine cards for SMPTE 259M uncompressed standard definition video 
transport were previously built by Tektronix as part of an SD video over ATM project. 
These mezzanine cards, an SDIN video deserializer and SDOUT video serializer, were 
used with minor changes for this project. Modifications were necessary to make the 
outputs from the 5 V boards compatible with the 3.3 V FPGAs on the UNAE. The cards 
each use one of the 80-pin mezzanine connectors discussed above for the optical 
mezzanine. 

Changes to the SDIN mezzanine (u9d2379-00) are as follows: 
1. Increase resistance of serial termination resistors on the parallel video outputs to 

300 ohms to limit input current to the UNAE. 
2. Remove power to the “silicon serial number” chip. 
3. Change the power supply and pull-up resistors to the board ID chip to 3.3 V. 
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4. Change the board ID resistors so that the ID register reads 0x19. 
5. Changes to the SDOUT mezzanine (u9b2527-00) are as follows: 
6. Connect the clock input from the UNAE board to the mezzanine clock output line. 
7. Remove power to the “silicon serial number” chip. 
8. Change the power supply and pull-up resistors to the board ID chip to 3.3 V. 
9. Change the board ID resistors so that the ID register reads 0x39. 

4.3 UNAE board 

4.3.1 Design Objectives 
The Universal Network Access Engine (UNAE) was conceived as a card level, 
programmable module capable of receiving serial data, extracting desired information 
and passing key elements of the stream to a parallel interface. It should have the 
capability to process the information sufficiently to perform format or protocol 
translation. Similarly, the UNAE is expected to transfer and translate information from 
the parallel interface to one or more serial interfaces. The universal aspect is derived from 
its being rapidly programmable at several logical steps in the data flow and its 
accommodating any of several modular media attachment interfaces. The UNAE module 
throughput must be sufficient to handle data in the 100Mbps – 3Gbps range in real time. 

4.3.2 Summary of Work 

4.3.2.1 Introduction 

The architectural motivation for the UNAE board design is included in section 3.2.2; and 
the functional layout is displayed in Figure 4. The UNAE is a protocol and data format 
processing engine card that is intended to rely on modular mezzanine cards to act as 
physical media attachment interfaces. For example fiber, coax and custom data and 
power interface cables such as IEEE-1394 Firewire could be accommodated without 
physical changes to the UNAE base card. In a system, two or more UNAE cards can 
communicate across a UTOPIA-3 or SPI-3 parallel interface realized through use of the 
P1/P3/P5 back plane connectors of the cPCI platform. In this way two UNAE cards with 
attached mezzanine cards can act to convert data between two dissimilar protocols. 
Although this architecture supports UTOPIA3 for point to point Link layer transport of 
OC-48 ATM cells, reference will be made henceforth to an SPI-3 interfacev which 
supports packet transport at OC-48. Alternatively, user data in a serial format could be 
assembled into an appropriate protocol for transport and routing, as described below 
where two video formats have been mapped into various protocols. Figure 15 shows a 
UNAE board with optical mezzanine attached. The board is a 6u size cPCI card. Major 
elements such as the backside P1, P3, P5 connectors, the three major FPGA’s and FIFO’s 
may be seen. As seen in Figure 4 and Figure 15, the functioning engine is comprised of a 
mezzanine board, Framer, physical layer protocol engine (PLPE) a FIFO and cell/packet 
engine (CPE). The UNAE is a bi-directional interface: The transmit and receive sides are 
independent, except when one of the loopback modes is enabled. The UNAE provides a 
full duplex interface, providing the received and transmitted data on the duplex interface 
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are using the same protocol or data format. 

 
Figure 15  Photograph of a UNAE engine board 

To take advantage of the opportunity to reuse previously developed video interfaces, the 
UNAE base card has mezzanine connectors sufficient to host either a single network 
interface mezzanine card or a pair of video mezzanine cards, as described in section 0,  
Mezzanine boards. 

The UNAS system architecture originally required the UNAE to support a network 
interface mezzanine with a single BRAD ASIC to perform both multirate clock and data 
recovery (CDR) and serialization/deserialization (SERDES) functions. The BRAD was a 
key element to the application flexibility of the UNAS. Due to long lead times in 
designing and fabricating the BRAD, an optical test mezzanine was designed and 
fabricated, using a newly-available commercial chip that provided CDR and SERDES 
functions. Because the UNAE was expected to interface with the BRAD, it was designed 
to distribute a buffered version of the same clock to each of the engine’s FPGA’s. This 
meant that later, in order to provide the two clock rates necessary to support Gigabit 
Ethernet using the same hardware without support from the BRAD, some modification of 
clock distribution would be necessary. As described later, these modifications were all 
accommodated in a modified mezzanine, leaving the UNAE design intact. 

The UNAE is realized with a twelve-layer circuit board, the first run of which was 
fabricated in June of 2000 and the second run of which was fabricated, without changes, 
in January of 2002. Design elements of the UNAE board are presented below. 
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4.3.2.2 Hardware functions 

4.3.2.2.1.1 I/O mezzanine interface 

Referring to Figure 4, the UNAE transmit and receive serial interface is implemented as 
an interchangeable mezzanine. Three connectors provide hosting for 32 bits of LVTTL 
transmit and 32 bits of LVTTL receive data. Two independent and fully programmable 
(20-100Mhz) reference clocks are provided to the mezzanine, and two word 
synchronization clocks are expected from the mezzanine for each data direction. The 
mezzanine is the master for both transmit and receive word clocks. This is consistent with 
modern communication IC’s, including the HDTV interface chips used on the HDTV 
mezzanine.  

There are general purpose IO pins assigned to the mezzanine interface that are under 
software control via the Framer FPGA. They provide control and status signaling to 
configure and monitor the mezzanine. 

There is also a common connector (CC) bus that provides eight bits of bussed data 
between mezzanine connectors C1 and C2 and the Framer FPGA. This provides legacy 
mezzanine type reads. 

Each mezzanine type presents an identity discovery mechanism so the SW and HW 
together can configure appropriately. SW sets all pins as INPUTs and runs a detection 
algorithm for the expected mezzanine. If it fails, then the reset of the setup is aborted. If it 
succeeds it configures the appropriate INPUTs and OUTPUTs. It is possible to build a 
mezzanine board auto-detect feature in software. However, this has not been 
implemented since it requires software policy enforcement to overcome system wide 
configuration issues.  

4.3.2.2.1.2 Interface processor 

The UNAE board includes an Intel i960RD interface processor. The embedded processor 
running VxWorks real-time OS provides support functions for the ASIC and FPGA 
functional blocks, in addition to managing protocol selection decisions and handling the 
loading of FPGA images specific to supported protocols. 

It communicates with the functional blocks on the UNAE card through registers and a 
messaging passing protocol. Message passing is utilized as described in the Software 
Architecture specification for communication with the external host and GUI. 

The interface processor manages the primary PCI backplane interface, which carries 
commands to and from the host processor on another module. The interface processor 
core circuit was duplicated from a previous Tektronix-designed Trillium MPEG Video 
Encoder board. The design includes the VxWorks operating system, a PCI device driver 
and a messaging unit. The following changes were made to the Trillium design to enable 
integration into the UNAE board: 
• Added FPGA configuration signals to Load PLD to allow independent, processor-

controlled programming of three FPGA devices. 
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• Updated secondary PCI bus interface design to allow multiple PCI devices. Brought 
out two four-bit signals, S_GNT<4..1>* and S_REQ<4..1>*. 

• Brought out local bus address, data, and control signals. 
• Moved Load PLD to output side of decoder and data/address drivers.  Changed local 

bus interface to Load PLD to separate data/address buses. 
• Added UART. 
• Added diagnostic connectors. 

4.3.2.2.1.3 Loader 

A non-volatile programmable logic device (PLD) is used to control configuration of the 
three FPGA’s, as well as reading of the board type and version registers.  The processor 
writes FPGA configuration data to the Load PLD, which in turn strobes the hardware 
signals appropriately to program the FPGA’s. The Load PLD is programmed after 
manufacturing through its JTAG port. 

4.3.2.2.1.4 Framer FPGA 

The Framer provides the first interface to/from the mezzanine data path, the mezzanine 
control path, access to the three registers ports of the DDS, and LED control. There is a 
PCI interface through which it is connected to the embedded processor. 

The intended function of the Framer is to extract/insert serial line overhead at the 
mezzanine side on deserialized data, and transmit/receive parallel, protocol-encapsulated 
payloads to/from the PLPE.  There are four clocks provided to the Framer: The Buffered 
Write Word Clock, the Buffered Read Word Clock, the PCI clock, and the 10Mhz GPS 
clock. All Framer FPGA images have the DDS, mezzanine, and LED control registers 
mapped at the identical address. 

The Framer can communicate with the mezzanines bi-directionally using registers and 
the secondary PCI interface. Parallel reads and writes with the optical network mezzanine 
(g2469xc version) can also run through this PCI interface. 

Framer designs for specific protocols are described in sections 4.4 and 4.8 of this report, 
and in additional specifications (“SONET Framer Preliminary Specification” and 
“Gigabit Ethernet GMII Bridge Specification NGI UNAE Framer Programmable Logic 
Device”) developed within the program. 

4.3.2.2.1.5 PLPE FPGA 

The PLPE (physical layer processing engine) accepts or sends frame-stripped data (e.g. 
HDLC data and or SMPTE-292 video data) from or to the Framer and extracts payload. 
Alternatively, it functions as the MAC processor for Gigabit Ethernet. There is a PCI 
interface through which it is connected to the embedded processor. Details of the roles it 
plays depend on the protocol data format being processed. Its roles in the implemented 
formats are included in other sections of this document and in respective specifications 
developed in the program. 
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For formats that require recovery of clocks for real time user data, the PLPE and CPE 
work interactively to fill and empty the intervening FIFO of data in a manner that is 
determined by arrival rate of the user data. This may be supplanted by clock control 
provided by a GPS receiver. 

4.3.2.2.1.6 CPE FPGA 

The cell packet engine acts first and foremost as a simple, rate-matching and address 
filtering interface controller between a pair of hardware FIFO’s and the SPI-3 up/down 
bus backplane to manage cell flow. On the receive side, the engine will extract cells from 
the receive-side FIFO and hand them to the link-layer device. On the transmit side, the 
engine will pass cells from the link-layer device to the transmit-side FIFO. In all cases, 
the engine must monitor the fullness of the FIFO’s and create the appropriate 
request/grant signals. 

Features of the CPE (not all implemented) include 
• Programmable logic to enable multiple applications 
• Can support various width and rate interfaces (SPI-3 implemented) 
• Manages packet FIFO’s 
• Programmable to isolate/drop streams through address filtering 
• RAM-based counters enable QOS measurements 
• Large packet buffers permit out-of-order detection/correction 
• Supports packet insertion and extraction 
• Traffic generator creates streams (not implemented) 
• Captures packets for subsequent analysis (not implemented) 

There is a PCI interface through which it is connected to the embedded processor. Two 
external 36x128K scratchpad memories are available to store intermediate data. These 
resources are configured via program images in the CPE to create engines to perform 
tasks on the cell/packet stream.  

The scratchpad memory has been used to buffer and manage the packet flow. For 
example, by buffering the arriving packets, out-of-order packet arrival can be corrected 
up to the limit of the buffer size. The scratchpad can also be used as a capture buffer to 
retain packets from a set of flows for later analysis. 

4.3.2.2.1.7 On board memory 

On board DRAM is made available for VxWorks core operating system, which DMA’s 
the UNAE FPGA images into the RAM at UNAE boot time. The VxWorks core 
operating system will then dynamically link the software module to the core OS. The 
board is designed to accommodate up to 32 MB of DRAM. 

There is a 1 MB FLASH memory requiring 12 V to program, applied through a hardware 
switch for write protection. This Flash memory contains the core VxWorks operating 
system. There is not any UNAS system information contained in this image. The image is 
placed into the FLASH ROM by use of the VxWorks Loader. The FLASH memory is 
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initialized once at board turn on with a sufficient VxWorks image to initiate a boot of the 
UNAE core OS upon system start or reset. Upon this initial boot, VxWorks then writes a 
full system image into DRAM, allowing it to take full control of more completely 
initiating the full board to a known stable state.  

4.3.2.2.1.8 Backplane bus interface 

Each cPCI 6U size UNAE card fits into the Tektronix Platinum platform, a cPCI based 
platform for communication test equipment, which has a variety of chassis options, from 
5 card slots through 16 slots. There exist four 32-bit interfaces on the Platinum Platform 
backplane. These are termed an up/down bus structure. In addition to the data lines, there 
are enough additional auxiliary signals to complete two SPI-3 interfaces.  

As shown in Figure 16, one interface is configured as a Link layer interface and the other 
is the physical (PHY) layer interface. 
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Figure 16 Busing among multiple UNAE cards in a Platinum platform  

For a card in slot n, its Link layer partner is in slot n-1 and its physical layer partner in 
slot n+1. The Link card will be the source of the backplane clock. The Link configuration 
is typically applied to UNAE cards used for higher layer protocols such as processing 
video data into and out of packets. The PHY card typically acts as a network physical 
layer interface.  

At the system level, if there is a NIC and a user interface card in use, the transmit and 
receive directions are referred to the network interface (i.e. transmit is to the network). 
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When discussing UNAE components, transmit and receive refer to the function of the 
component. For example, there are both transmit and receive FIFO’s (TFIFO and RFIFO, 
respectively) in the transmit path. The TFIFO and RFIFO refer to the data flow with 
respect to the backplane SPI-3 bus. 

There is not support for multiport PHY due to a limit of available addressing lines, nor is 
there support for extensions such as in-band addressing for the transmit interface. The 
CPE FPGA has the responsibility of acting as the up/down bus controller for the UNAE 
as described below. 

Two UNAE cards are interconnected across the backplane via the CPE FPGA. Figure 16 
shows how the SPI-3 busses on a UNAE card in slot n are connected with adjacent cards 
in slots n-1, n+1.  Connector P5 is the transmit data path for the physical interface.  The 
link end is Link Transmit (LT).  The physical end is Physical Transmit (PT).  Connector 
P3 is the receive data path for the physical interface.  The link end is Link Receive (LR).  
The physical end is Physical Receive (PR). 

4.3.2.2.1.9 FIFO 

Located between the CPE and PLPE FPGA’s, synchronous FIFO’s are used to buffer 
data between the PLPE and the backplane. The FIFO is a standard off-the shelf 
component. Each FIFO is 256k x 36 bits wide and carries 32 bits of data and a four bit 
TAG field. The TAG field provides interpretation of the contents of the data field and 
packet structure. The lower two bits of the TAG field are compatible with the TAG field 
of the SPI-3 interface as shown in the accompanying table below. 

While these TAG bits can identify the valid bytes in the data word, they are not required. 
For IP packets, the header will be identified by the start of packet tag. The length sub-
field will be located and the packet length counted down. When the count has been 
exhausted, the FIFO will be "flushed" and the data discarded until the next start-of-packet 
signal is asserted. 

Table 2 FIFO packet tags indicating packet data type 

Tag Meaning 

0000 Normal word; data[31:0] valid. 

0001 Reserved 

0010 Reserved. 

0011 Timestamp[31:0]. 

0100 End of packet; data[31:0] valid. 

0101 End of packet; data[31:8] valid. 

0110 End of packet; data[31:16] valid; 

0111 End of packet; data[31:24] valid. 
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1000 Start of packet; data[31:0] valid. 

1001 Start of packet; data[7:0] valid. 

1010 Start of packet; data[15:0] valid. 

1011 Start of packet; data[23:0] valid. 

1100 Discard Packet 

1101 Simultaneous start/end; data[31:8]/data[7:0] packet boundary. 

1110 Simultaneous start/end; data[31:16]/data[15:0] packet boundary. 

1111 Simultaneous start/end; data[31:24]/data[23:0] packet boundary. 

 

The TFIFO only goes above zero occupancy when the backplane bus is congested. 

The RFIFO normally runs at half-full under the control of the clock recovery algorithm 
and subject to cell or packet interarrival time variations. 

As it is not known a priori whether the transmit or receive side of the FIFO should be 
responsible for programming these parameters, both the PLPE and the CPE will be 
connected to the programming pins. Later, software will determine which device should 
do the programming. At that time, the buffers on the programming EPLD will be enabled 
and programming performed. 

In addition to the direct FIFO connections, there will also be reserved signals routed 
between the PLPE and the CPE. These lines are defined as needed to perform functions 
such as notification of a complete cell added or removed, communications relating to fill 
level, and so on. 

4.3.2.2.1.10 UART 

A UART was added to enable a terminal interface directly to the operating system 
running on the i960RD without passing data through the backplane PCI bus.  The UART 
implementation was made to resemble that of the PCI controller board from Cyclone 
Microsystems motherboard as closely as possible, including address map and hookup to 
the XINT7 interrupt. 

The UART is clocked using a one-time-programmable crystal oscillator at 1.8432 MHz. 
The oscillator functions from power-up. 

The Data Terminal Equipment signals are buffered with 14C88/14C89 RS-232 receiver 
and transmitter chips.  They are available on a 10-pin header, which can be connected by 
a ribbon cable to a 9-pin D-SUB connector. 

4.3.2.2.1.11 SRAM interface 

The architecture includes SRAM connected to the CPE and PLPE blocks to allow for 
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buffering of bursty packet flows, reordering of out of order packets or cells and if needed 
can be used for more flexibly packetizing and reassembling data as described in the 
previous section 4.3.2.2.1.6 on the CPE FPGA.  

There are two independent scratchpad memories attached to the CPE. These RAM’s are 
clocked with the same clock as the CPE. There is a two clock period latency for any read 
or write operation, but reads and writes may be overlapped as the part is pipelined. The 
two RAM’s are available for whatever need should arise. Both the CPE and PLPE have 
RAM interfaces, although only the CPE has been implemented. 

4.3.2.2.1.12 Loopback functions 

Each FPGA has the ability to loopback the incoming data from its neighbor sourcing the 
data. This is used for debug and has been one of the most helpful features in many 
respects. It is implemented by adding code to each FPGA and can therefore be very 
flexible in its implementation. 

4.3.2.2.1.13 DDS Clock generation 

There are three Direct Digital Synthesizer (DDS) clocks. Transmit clock, backplane clock 
and FIFO readout clock are each controlled by a DDS. When generating output for a 
protocol where the output rate must match the input rate, the synthesizer monitors the fill 
level on the rate-matching FIFO and makes incremental adjustments to maintain the 
proper FIFO fill level. Only video such as SMPTE-292 and SMPTE-259 have this 
requirement. When generating outputs where exact rate matching is not a requirement, 
the synthesizer generates a fixed frequency clock. DDS devices are controlled by the 
Framer. 

The receive portion of the UNAE board includes dedicated circuitry to recover a video 
clock frequency that is equal to that of the remote transmitter when integrated over the 
long term.  The clock recovery circuit is a software controlled clock generator with an 
extremely precise “vernier” for adjusting the frequency.  It is based on the Analog 
Devices AD7008 DDS chip in conjunction with an ICS AV9170 clock multiplier.  The 
circuit design used is a patented Tektronix invention. 

4.3.2.2.1.14 GPS Timing Reference 

The front panel optionally has connectors to accept a 10 MHz reference clock and a 1 Hz 
reference pulse from a Global Positioning Satellite receiver. The software, via a COM 
port connection will receive timing data from the GPS and synchronize timestamp 
counters to UTC. The GPS signal may be made available to other cards via two pair of 
full-differential ECL signal lines bussed on the backplane to all slots. These drives must 
be capable of driving 25 ohm lines and have the ability to be disconnected electrically 
from the backplane should another card be selected to drive the clock lines. 

The GPS timing hardware is not fully implemented and has not been tested, but the 
packet header for transport of SMPTE292 video includes timestamps if provided. 
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4.3.2.2.1.15 Reference Oscillator 

A local 10 MHz oscillator provides a timing source for the DDS subcircuits, timestamp 
clock, and, via a clock multiplier, the 80 MHz clock for the backplane interfaces. When 
available, this reference may be switched out through use of multiplexor in favor of the 
10 MHz reference from the GPS timing module. 

4.3.2.3 Physical Interfaces 

4.3.2.3.1.1 Backplane interfaces 

As described above, the UNAE meets P3/P5 connectors of the Platform up/down bus, 
which is compliant with UTOPIA3 ATM interface and also with the SPI-3 packet 
interface, without address selection. The cards also meet with cPCI 64 bit bus on P1/P2 
for communication with the host processor on a separate module. 

4.3.2.3.1.2 RS232 Connector 

A 10-pin ribbon cable header is provided for RS-232 serial port connection to the i960RD 
processor core.  The signals are arranged on a 9 pin D-SUB style connector when 
connected via a ribbon cable. Refer to the RS-232 standard for signal name definition. 

4.3.2.3.1.3  JTAG Header 

A JTAG header is provided for direct connection to JTAG test instruments.  The pinout is 
specific to the JTAG test instruments previously used in Tektronix internal 
manufacturing. 

The JTAG header may be shorted out of the JTAG loop by placing a zero-ohm resistor.  
In this case, the JTAG connection is made through the primary PCI bus. 

4.3.2.4 Software/Hardware Interface 

4.3.2.4.1.1 I960 Memory Mapping  

The board-level chip enable is asserted when a memory access is requested by the 
processor or PCI Address Translation Unit (ATU) into the Memory Bank 1 control space.  
This space is defined by setting Memory Mapped configuration Registers upon startup.  
The Memory Bank 1 base addresses and offsets are cataloged in the “UNAE 
Hardware/Software Specification Document.” 

4.3.2.5 Secondary PCI Bus 

The local bus is used for writing FPGA configuration registers.  The three FPGA’s are 
accessed through the secondary PCI bus. 

4.3.2.6 Fabrication 

For the UNAE board a twelve-layer circuit board was captured in Cadence Concept, final 
net  and pin definitions for all components were completed, FPGA pin assignments were 
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compiled and timing was found to be acceptable. A design review, routing of the circuit 
board, and bill-of-materials was completed in July 2000 and the board was released for 
fabrication.  

A multirate optical test mezzanine board was architected, and schematic capture 
completed. Long lead time components were ordered and all components scheduled to 
arrive in the first week of September 2000. The board layout was released for fabrication; 
and boards scheduled to arrive in September 2000. Just these two fabrication runs of the 
single G2468-XA UNAE board design were necessary to complete the program. Sixteen 
boards were fabricated of which fourteen were functional at end of program. 

4.3.2.7 Turn on, debug and performance of UNAE boards 

Two fabricated boards were received from a short run, with the balance to be built in 
September/October 2000. The two fabricated boards passed initial power up and were 
installed in the platform, where VxWorks was successfully loaded in the embedded 
processor. Images for all three FPGA were successfully loaded and partially debugged. 

The PCI interface embedded in each FPGA was brought to full functionality in the last 
quarter of 2000, while several minor iterations of the programmable logic designs for 
each FPGA part were needed to get basic functional performance. PCI accessible 
interface logic was added to the Framer to control the (direct digital synthesizer) DDS’s 
and mezzanine. A general purpose I/O interface, fully programmable at the individual pin 
level was created. Embedded test software was written to identify each of the mezzanine 
types (HDIN, HDOUT or optical test mezzanine) and to configure the detected 
mezzanine, FPGA’s, and DDS frequencies for proper operation. 

Two separate sets of FPGA code were initially developed for the three FPGAs on the 
UNAE boards. The first set was designed to accept SONET-framed IP data from an 
optical network, and interface the packet data to the SPI-3 interface. The second set of 
FPGA code was installed on a second board to achieve a demonstration of HDTV 
transport in packets over a SONET network. Details of both designs are provided below. 

Besides debugging the electrical integrity, speed and timing of individual components, 
substantial FPGA code modifications were required at each progressive step both to 
confirm functionality and especially to debug in-circuit performance. Flexibility offered 
by FPGA’s and the ability to modify designs helped eliminate signal integrity and timing 
issues of the UNAE boards. 

The first functional code for the optical network interface was completed and simulated 
in June, 2000. The code consists of the following components:  

• Framer: takes SONET data at an OC-48 rate (2.5 Gbps) from the optical layer, 
removes the SONET overhead, aligns the data, and presents it on a 32-bit wide 
interface. Code for controlling DDS chips and mezzanine cards is also on this 
part. 
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• POS48 PLPE: takes parallel data from the Framer, removes HDLC/PPP overhead, 
and passes the data to a 36-bit wide hardware FIFO. This FPGA passes data to / 
accepts data from the microprocessor in order to control setting up a PPP link. 

• CPE: takes data from the 36-bit wide FIFO and creates the appropriate control 
signals before passing it to the SPI-3 bus. 

The UNAE board was tested on the bench using PPP traffic generated by an IXIA OC-48 
test set. It was possible to set up a PPP session through the microprocessor interface, and 
have the UNAE card receive error-free test packets from the IXIA box (based on the PPP 
frame check sequence calculation over all of the data). 

FPGA code for video functionality on the UNAE board was also written and debugged 
consisting of the following components: 

• Framer: takes a parallel high definition video stream from an HD mezzanine card 
(aggregate data rate 1.5 Gbps) and passes it through to a 20-bit wide interface. 
Code for controlling DDS chips and mezzanine cards is also on this part. 

• Video PLPE: takes 20-bit wide parallel video data from the Framer, segments the 
video for transmission in IP packets, adds RTP, UDP, and IP headers to the data, 
and passes it to the hardware FIFO. This chip also checks for the type of HD 
video present, and monitors video errors using the SMPTE-292M CRC. 

• CPE: takes data from the 36-bit wide FIFO and creates the appropriate control 
signals before passing it to the SPI-3 bus.  The code is identical to that placed in 
the optical network interface described above. 

Board to board communications were not successful, due in part to incompatible SPI-3 
bus clock rates and board components. After getting faster FIFO’s installed and changing 
the backplane DDS clock rate to 80Mhz, the video loopback through the CPE began 
working, demonstrating that HDTV to IP and back could be performed on the UNAE. 
Performance of the video card was tested by sending serial HD video test patterns 
generated by a Tektronix TG700 test set to the board. Video serialization/deserialization 
was done on mezzanine cards attached to the UNAE board that were developed for a 
previous project.  Details of these results are provided in section 5.2.  

By February 2001, eight UNAE boards had been manufactured and modified for 
operation at OC-48 line rates. Seven of these boards operated error-free in loopback 
mode with serial HD video signals.  Error-free loopback of OC-48 SONET signals with 
SONET/PPP code loaded into the UNAE FPGAs had not yet been demonstrated. The 
UNAE had been able to send and receive PPP configuration packets in order to establish 
a PPP link with a Cisco 12000 GSR router equipped with OC-48 line cards. There were 
still timing issues with the main data path. Finally, the PLPE FPGA was replaced with a 
faster, just-released part.  

By September 2001 error free video transmission was demonstrated between two UNAE 
boxes attached to different OC-48 ports of a Cisco router, demonstrating that the UNAE 
concept was viable and signal fidelity was sufficient for this major milestone. 
Subsequently, this was demonstrated to work on a WAN from Seattle to Arlington, VA 
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using Internet2 as described in detail in section 5.2.1. 

The UNAE board was also utilized to provide interfaces between SDI video and Gigabit 
Ethernet and between IP packet generators and all-optical label switching network 
elements. These applications are detailed below in sections 5.2 and 5.3.

4.4  SONET OC-48 Framer design 

4.4.1 SONET Framer design objectives 
The SONET framer implements all the functions necessary to create and recover 
SDH/SONET STM-16c/STS-48c frames. Separate transmit and receive designs are 
implemented in a 400k gate FPGA using the Protocol Compiler tool. Input and output 
paths are 32 bits wide, with several additional control lines. On the receive side a data-
valid flag indicates when SONET overhead is being processed; on the transmit side, a 
request line provides an indication several clocks ahead to the upstream device to hold off 
data transmission while SONET framing and overhead is generated. A PCI interface was 
also implemented in the device using Protocol Compiler for the CPU to access registers 
in the design for control and data collection purposes.  

4.4.2 Summary of work  

4.4.2.1 SONET transmit design 

On the transmit side, an SDH/SONET STM16c/STS-48c frame is constructed and the 
appropriate overhead bytes synthesized and placed in their proper locations. Some 
selected key overhead bytes, which are not determinable a priori, are inserted from 
registers. At the proper times, the contents of the Synchronous Payload Envelope (SPE) 
are taken from yet another 32-bit interface and placed into the payload. B1, B2, and B3 
parity calculations are performed and the results placed into the frame. Provisions have 
been made to programmatically insert either path or line Alarm Indication Signal (AIS) if 
desired. Finally, the frame is scrambled and passed on to the final 32-bit interface for 
multiplexing into the serial stream. 

4.4.2.2 SONET receive design 

The receive side of the framer begins by accepting an unaligned 32 bit word version of 
the serial stream. It searches the incoming data until it locates the framing pattern. Based 
on the location of the framing pattern, the word is shifted to align the frame. Once 
synchronized, descrambling is performed and key bytes located. The pointer is extracted 
and the path overhead location determined. All pointer movements are completely 
supported as per the applicable standards. Various key section, line, and path overhead 
bytes are made available via capture registers. Along the way, B1, B2, and B3 parity 
bytes are recalculated and compared to the values specified in the frame. Three separate 
32-bit counters keep track of the number of errors. The SPE is delimited and the payload 
data is made available via a 32-bit interface. 
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4.4.2.3 SONET PCI interface 

The Framer FPGA passes information to and from the Intel i960 embedded 
microprocessor on the UNAE board through a secondary PCI interface. This secondary 
PCI interface is invisible from the Windows NT side (backplane PCI interface) and is 
used only for communications with the FPGAs on the board. Communication with the 
UNAE mezzanine boards via the secondary PCI interface is also possible through the 
Framer FPGA. Two Framer registers, c1[19:0] and c2[18:0], allow 39 bits of information 
to be written to or read from any of the mezzanines. In addition, the latest version of the 
optical interface mezzanine (g2469xc) has a data bus cc_data[7:0] and an address bus 
cc_addr[7:0] that allow parallel reads and writes from the mezzanine via the Framer PCI 
interface. 

The Framer PCI design is a target-only PCI interface (i.e., cannot act as bus master) 
written in the Protocol Compiler graphical programming language. The design requires 5 
clocks for a PCI transaction (read or write) because additional wait states were added to 
the design to allow time for data propagation to and from the mezzanine cards. The PCI 
design uses address bits adr[26:24] to determine the target FPGA; for the Framer these 
bits are set to “001”. Addressing for the registers in the Framer is built into the PCI 
design block (see the SONET Framer Specification for addresses and descriptions of the 
registers). All writeable registers are read-back except for the mezzanine registers 
c1[19:0] and c2[18:0]. 

4.4.2.4 SONET design verification 

Verification of the SONET Framer design was done in two stages. For preliminary design 
testing and debugging of the SONET encoder, a Protocol Compiler test bench was 
written that generates a sequence of small packets and places them at the Framer input. 
The SONET output of the design is checked by inspection of waveforms. Testing of the 
SONET decoder design is difficult by this method because the large amount of data 
required to generate complete OC-48 SONET frames (38,880 bytes) makes testing very 
tedious. 

For complete testing of the SONET Framer design using random data, a test bench was 
written using the VERA language. VERA is a superset of the Verilog hardware design 
language with extensions to simplify verification and debugging of designs. A VERA test 
bench was written that feeds the output of the SONET encoder into the SONET decoder 
and checks the resulting output. The SONET data path was verified to be free of errors; 
however, the SONET loss-of-frame error indication does not work properly. 

4.5 Packet Over SONET OC-48 PLPE design 

4.5.1 Packet Over PLPE design objectives 
This design, shown schematically in Figure 17, implements the Packet-over-SONET 
(POS) protocol in the physical layer protocol engine (PLPE) FPGA of the Universal 
Network Access Engine. This FPGA is the interface between the Framer FPGA and a 
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hardware FIFO on the UNAE board. The FPGA will extract (receive direction) or encode 
(transmit direction) IP packets in PPP/HDLC framing. The design was implemented 
using the Protocol Compiler graphical hardware design language.  

 

PLPE

PCI

Framer

FIFOs

CPE

 
Figure 17 .  Placement of the POS-PLPE FPGA within the Universal Network Access System 

architecture. I/Os on the left side are PPP/HDLC streams in SONET, and I/Os on the right side are 
IP packets 

 

4.5.2 Summary of work 

4.5.2.1 POS transmit design 

In the transmit direction the POS-PLPE FPGA will read data from a FIFO, encapsulate 
the packets in PPP/HDLC headers, and pass the data to the SONET Framer FPGA. The 
data flow will be controlled by a request line from the Framer. During the PPP setup 
stage the POS-PLPE FPGA will also accept packets from the microprocessor interface 
and encapsulate them as above. 

4.5.2.1.1 Transmit direction processing 
1)  Data input:   

Data is read from the microprocessor interface FIFO during PPP setup, or from the main 
data FIFO during normal operation. Availability of a packet from the microprocessor for 
transmission is indicated by setting bit TRN_CTL[4]. Packets from the microprocessor 
will have the following PPP/HDLC frame generation steps already done by software, and 
will be passed through unchanged. 

 

2)  Frame generation:   
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Frame generation is done by inserting Flag Sequence characters (0x7e) at the start of 
packets, followed by the HDLC Address and Control bytes (0xff03). Following this the 2 
byte PPP Protocol field is inserted, set to either 0xc021 or 0x8021 for data from the 
microprocessor interface or to 0x0021 for data from the main data FIFO interface (this 
field can optionally be set to an alternate value via the TRN_PROTO register). If no 
packets are waiting in the FIFOs to transmit, Flag Sequence characters are transmitted. In 
the event that the FIFOs become empty during transmission of a packet, or if the errored 
packet signal is asserted during transmission, the abort packet sequence 0x7d7e is 
inserted. 

 

3)  FCS generation:   

Each data word is processed as it arrives to calculate the CRC-32 Frame Check Sequence 
(see diagram below). The 1’s complement of the 4 byte FCS is appended to the last data 
byte of the frame. 

 

....D0 D1 D31

G1 G2

LSB MSBCRC-32

Data

 
 

4)  Byte stuffing:   

The data words are processed to determine if any of the bytes contain the Flag Sequence 
(0x7e) or Control Escape (0x7d) characters. If they are found, they are replaced by the 
the 2-byte sequences 0x7d5e and 0x7d5d, respectively 

 

5)  Frame termination:   

Flag Sequence characters (0x7e) are appended to the end of the HDLC frame so that it 
ends at a 32-bit boundary. If data already ends at a 32-bit boundary, an additional four 
Flag Sequence characters are added. 

 

6)  Data scrambling (optional):   

Scrambling is done on the entire POS frame sequence, including the FCS and framing 
flags. Scrambling is done using a parallel self-synchronous X43 + 1 scrambler as shown 
below. 
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Scrambled data
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4.5.2.2 POS receive design 

The POS implementation of the PLPE in the receive direction takes data from the 
SONET Framer FPGA, processes packets encapsulated in HDLC/PPP headers, and sends 
the packets to an external hardware FIFO or an internal FIFO for PPP LCP negotiation 
packets. Figure 17 above indicates schematically the placement of the PLPE functionality 
in the Universal Network Access System. The interface to the POS FPGA from the 
SONET Framer is a parallel data bus plus a valid line that indicates whether each clock 
contains valid data. 

4.5.2.2.1 Receive direction processing 

1)   Descrambling (optional): 

Descrambling is done using a self-synchronous X43 + 1 descrambler as depicted below:  

 
Scrambled data

Unscrambled data

43 bit shift register

 
 

2)   HDLC frame delineation: 

Frame delineation  is done by searching for “Frame Sequence” patterns (0x7e) in the 
descrambled data. Single or multiple Frame Sequence patterns are used to mark the 
beginning and end of HDLC frames; repeating Frame Sequence patterns are used as byte-
aligned fill. The Frame Sequence patterns are removed from the data and it is passed to 
the next process. 
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3)   Byte “destuffing” (optional) and invalid frame detection: 

Certain characters (0x7e and 0x7d) are “escaped” in the PPP data stream by modifying 
them and placing the Control Escape character (0x7d) in front of them. The data is parsed 
for Control Escape characters, and when they are found they are removed and the 
following character XORed with 0x20, except if the following character is 0x7e. This 
sequence signifies an aborted frame, so the “errored data” flag is set and the aborted 
frame counter is incremented. 

4)   Parse PPP protocol and length fields and forward packet to the appropriate interface: 

The first characters of an HDLC frame are the Address and Control bytes, which are 
always set to 0xff and 0x03 for PPP. These bytes are discarded for IP data packets 
(passed through unchanged for control packets routed to the microprocessor), and the 
following two bytes (PPP Protocol field) are examined. If the LSB of the least significant 
octet is not 1 and the LSB of the most significant octet is not 0, the frame is an 
unrecognized protocol and is marked for discard. If the first two bytes are 0xc021 (Link 
Control Protocol) or 0x8021 (IP Control Protocol), the frame is forwarded to the 
microprocessor interface FIFO and a status bit is set (maskable interrupt) indicating that 
data should be processed by the processor. Frames with the Protocol field set to 0x0021 
are forwarded to the main data FIFO interface. 

5)   FCS check, min and max packet length check (optional): 

After byte destuffing the data is processed word by word to calculate a CRC-32 Frame 
Check Sequence (see diagram below). The generator polynomial for CRC-32 is X32 + X26 
+ X23 + X22 + X16 + X12 + X11 + X10 + X8 + X7 + X5 + X4 + X2 + X + 1, where each non-
zero exponent corresponds to a feedback path labeled G1, G2… in the diagram below. 
The register D1…D31 is loaded with 1’s at the start of reception. If the CRC-32 
including the embedded FCS (last four bytes of the frame) are not equal to 0xdebb20e3, 
the data is errored. The FCS error counter is incremented and the frame is marked for 
discard. 

 

....D0 D1 D31

G1 G2

Data

 
 

A count  is also kept of the number of bytes in the frame. If this number is below the 
minimum set in the MIN_RU register, the min error counter is incremented and the frame 
is marked for discard. If the number is above the maximum set in the MAX_RU register 
the max error counter is incremented and the frame is marked for discard. 

6)   Receive timestamp: 

Each data word forwarded to the receive FIFO is timestamped with a 36-bit quantity 
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derived from a highly accurate 10 MHz clock (on board oscillator or GPS clock in an 
adjacent PCI slot). 32 bits are a 10 MHz counter, and 4 bits are a sequence number added 
to each 32-bit timestamp so that all timestamps of data at the 77.76 MHz rate are unique. 
The timestamp is forwarded out a separate, parallel FIFO port at the same time as the 
data. 

4.5.2.3 POS PCI interface 

The Packet-over-SONET PLPE PCI interface is similar to the Framer PCI interface. The 
design is a target-only PCI interface (i.e., cannot act as bus master) written in the Protocol 
Compiler graphical programming language. The design requires 5 clocks for a PCI 
transaction (read or write) because additional wait states added to the Framer PCI design 
were left in the PLPE PCI design to assure reliability. The PCI design uses address bits 
adr[26:24] to determine the target FPGA; for the PLPE these bits are set to “010”. 
Addressing for the registers in the PLPE is built into the PCI design block (see the 
Packet-over-SONET PLPE Specification for addresses and descriptions of the registers). 

4.5.2.4 POS design verification 

The Packet-over-SONET designs were also tested in two stages. During initial design, 
short input sequences were generated using a Protocol Compiler test bench that allowed 
for quick debugging of the transmit and receive designs. More exhaustive testing using 
long sequences of random data was then done using test benches written in the VERA 
language. Automated error-checking allowed verification with tens of thousands of test 
packets of varying length. 

4.5.2.5 PPP negotiation 

PPP connection negotiation will be handled by a microprocessor on the UNAE board. 
PPP packets whose protocol field indicates that they are control packets (Link Control 
Protocol or IP Control Protocol) will be placed in a microprocessor FIFO implemented 
on the POS-PLPE FPGA. When the channel negotiation is completed, the microprocessor 
will signal the POS-PLPE via a control bit and data packets will be forwarded to the main 
hardware FIFO interface. A 36 bit timestamp is added to each data word and written into 
a parallel hardware FIFO coincident with the data. 

The transmit function uses the following default PPP parameters: 

Packet length: 572 bytes (settable  48 – 65,536 bytes) 

Asynchronous control characters: not supported 

Authentication protocol: authentication not required 

Quality protocol: link quality monitoring disabled 

Magic number: magic number negotiated by software 

Protocol field compression: not supported (2 byte protocol field) 
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Address and control field compression: not supported (2 bytes address and control) 

FCS alternatives: CRC-32 supported in hardware, CRC-16 implemented only for 
negotiation packets 

4.6 Serial digital video PLPE design 

4.6.1 Video PLPE design objectives 
The video implementation in the PLPE FPGA takes video data from a video mezzanine 
card (forwarded through the Framer FPGA) and inserts it into IP/UDP/RTP packets in the 
VIN direction, or removes it from packets in the VOUT direction. The data width is 10 
bits for the standard definition SMPTE 259M implementation, and 20 bits for the high 
definition SMPTE 292M implementation. The clock rate for the SMPTE 259M 
implementation is 27 MHz (270 Mb/s data throughput) and the clock rate for the SMPTE 
292M implementation is 74.25 MHz (1.485 Gb/s data throughput). The Video PLPE is 
intended to allow transmission and reception of packetized data with an adjacent physical 
layer network card. 

In the video input (VIN) direction, the Video PLPE will read 10 or 20 bit video words, 
format them into 32 bit data words, construct packet headers from information in the 
FPGA registers, and forward the packets to a hardware FIFO (RFIFO). From there the 
packets will be sent to a neighboring card across an SPI-3 backplane interface. Since 
video input is a continuous stream, the backplane interface needs to be run at a high 
enough speed to accommodate the video data rate plus the additional overhead of packet 
headers. We have chosen to run the backplane interface at 80 MHz, allowing for a 72% 
packet overhead when HD video data is transmitted. This requires that a minimum length 
packet have at least 205 bits of video data for a header length of 44 bytes (20 bytes IP + 8 
bytes UDP + 16 bytes RTP). Since we require that a packet contain an integral number of 
10-bit video words and start and end on 32-bit boundaries, the minimum packet contains 
40 bytes or 32 video words. 

In the video output (VOUT) direction, packetized video is removed from a hardware 
FIFO (TFIFO), packet headers are removed, and a 10 or 20 bit wide parallel video stream 
is reconstructed to be forwarded through the Framer to a video output mezzanine card. 
The output data rate is matched to the input data rate by buffering data in the FIFO and 
controlling the output data clock from an average FIFO occupancy. With appropriate 
software control, this will reconstruct the original video rate exactly as long as no data is 
lost. Sequence number checking has been implemented in the design to determine 
whether any data has been lost. 

4.6.2 Summary of work 

4.6.2.1 IETF 292M packet format  

In collaboration with the USC Information Sciences Institute (ISI East), a packet format 
for transporting SMPTE 292M video was proposed to the IETFvi. A payload format for 
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RTP (Real Time Protocol) packets is proposed for SMPTE 292M video, to be carried 
inside UDP and IP packets. The proposed format is shown in Figure 18 . Extensions to 
the base RTP packet format are proposed as follows: 

1) An extension to the standard 16-bit RTP header sequence number to 32 bits so that the 
sequence number does not wrap around too quickly. 

2) An 11-bit video line number is added to the RTP header to provide easy access to 
position in the video stream in case packets are lost (this was not in the IETF draft at the 
time the UNAS system was designed). 

3) A 148.5 MHz timestamp is used as the RTP timestamp to allow reconstruction of the 
timing of the SMPTE 292M stream (the timestamp specification was 10 MHz at the time 
that the UNAS system was designed). 

In addition, it was proposed that related 10-bit luminance and chrominance samples not 
be separated across packets, and that video data be octet-aligned when packetized. For 
the UNAS system, an additional criterion was added that the video data be 32-bit word-
aligned when packetized in order to make processing of received video data easier. 

 

  

   

   

   

   

   

   

   

   

   

   

   
 0                   1                   2                   3 

  0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 

 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

 | V |P|X|   CC  |M|    PT       |     sequence# (low bits)      |

 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

 |                     time stamp                                |

 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

 |                        ssrc                                   |

 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

 |    sequence# (high bits)      |F|V| Z |        line no        |

 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

 |                                                               |

 .                      SMPTE 292M data                          .
Figure 18  Proposed RTP header format for SMPTE 292M video data 

 

4.6.2.2 292M Video packet assembly 

The SMPTE 292M video input code waits for a flag to be set in the VIN_CTL register 
and the start of a new video frame to start processing video data. Optionally, the frame 
pulse can be ignored. The data should arrive from the Framer as aligned 20-bit words 
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from the 292M SDI mezzanine card, so no data alignment is necessary. Some of the 
292M HD mezzanine cards have a problem with data alignment due to chip flaws, 
however, so additional code was added to the FPGA to do bit alignment of the video 
(enabled via the VIN_CTL register). The following processing steps then occur: 

1)  A 20-byte IP header is constructed. The user can enter the IP Type of Service (8 bits), 
IP ID field (16 bits), IP Time-to-Live (8 bits), IP source address (32 bits), IP destination 
address (32 bits), and the data length of the packet in bytes (16 bits). The data length 
should be a multiple of 20 bytes, so that an integral number of 20-bit video words are 
included and the packet ends on a 32-bit boundary. The default data length is 520 bytes, 
giving an IP data length of 564 bytes. A Start-Of-Packet flag is appended to the first word 
of the IP header 

2)  The IP header checksum is calculated in parallel with header construction and 
appended as the last 16 bits of the IP header. 

3)  An 8-byte UDP header is constructed. The user can enter the UDP source port (16 
bits) and the UDP destination port (16 bits). 

4)  A 16-byte RTP header is constructed. The user can enter an RTP synchronization 
source ID (32 bits) and an RTP data type (8 bits). Other header fields are automatically 
calculated (sequence number, timestamp, video information) and inserted. The format of 
the header follows that described in reference 1 for SMPTE 292M video. 

5)  Input video is processed to insure bit alignment, and video type is extracted from the 
sequencing of timing reference signals. 

6)  20-bit video words (10-bit chroma and 10-bit luma) are converted to 32-bit data words 
in an 8-state machine, and placed in a shallow (64 word) internal FIFO. 

7)  Data words are read from the internal FIFO and written out into the external hardware 
FIFO (RFIFO). When a counter decremented from the length field indicates that the end 
of the packet has been reached, an End-Of-Packet flag is appended to the last data word 
and header construction is started again. 

4.6.2.3 292M Video packet disassembly 

The video output side of the Video PLPE withdraws packets from the hardware FIFO 
(TFIFO) and removes video words to reconstruct the outgoing 292M serial stream. The 
design waits for TFIFO to reach half full, then begins withdrawing video data at a default 
rate set by the DDS2 clock (74.250000 MHz for SMPTE 292M). The following 
operations are then performed on the data stream: 

1)  IP, UDP, and RTP header information is extracted from the data stream. A checksum 
is calculated across the IP header information and compared to the last 16 bits of the 
received header; if they do not match, an error is flagged in the VOUT_FLAGS register 
and the IP_HDR_ERRS counter is incremented.  

2)  Packet sequence number checking is done using the 32-bit sequence number 
contained in the extended RTP header (16 bits in the first header word and 16 bits in the 
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fourth header word). Counts are kept of sequence number mismatches of ±1, ±2, ±3, and 
>3, and exported to registers. 

3)  Data is placed in a shallow internal FIFO (64 words deep). This is necessary so that 
the video stream is uninterrupted while header processing occurs.  Reads are done from 
the external hardware FIFO (TFIFO) as long as the internal FIFO is less than half full. 

4)  When the internal FIFO reaches half full, an 8-state machine reads data from the 
internal FIFO and extracts 20-bit video words (10-bit chroma and 10-bit luma) from the 
32-bit wide data.  

5)  Bit alignment of the output data is checked and the output video type is determined 
from the TRS signals in the video stream. 

6)  The 292M video line CRC is calculated and compared to the value found in the video 
stream after the EAV reference. Errors are reported in the VOUT_FLAGS register and 
counted in VOUT_CRC_CNT. 

4.6.2.4 259M Video packet assembly 

The SMPTE 259M video input code waits for flag to be set in the VIN_CTL register to 
start processing video data. The data arrives from the Framer as aligned 10-bit words 
from the 259M SDI mezzanine card, so no data alignment is necessary. The following 
processing steps then occur: 

1)  A 20-byte IP header is constructed. The user can enter the IP Type of Service (8 bits), 
IP ID field (16 bits), IP Time-to-Live (8 bits), IP source address (32 bits), IP destination 
address (32 bits), and the data length of the packet in bytes (16 bits). The data length 
should be a multiple of 20 bytes, so that an integral number of 10-bit video words are 
included and the packet ends on a 32-bit boundary. The default data length is 520 bytes, 
giving an IP data length of 564 bytes. A Start-Of-Packet flag is appended to the first word 
of the IP header 

2)  The IP header checksum is calculated in parallel with header construction and 
appended as the last 16 bits of the IP header. 

3)  An 8-byte UDP header is constructed. The user can enter the UDP source port (16 
bits) and the UDP destination port (16 bits). 

4)  A 16-byte RTP header is constructed. The user can enter an RTP synchronization 
source ID (32 bits) and an RTP data type (8 bits). Other header fields are automatically 
calculated (sequence number, timestamp, video information) and inserted. The format of 
the header follows that described in reference 1 for SMPTE 292M video. 

5)  10-bit video words are converted to 32-bit data words in a 16-state machine, and 
placed in a shallow (64 word) internal FIFO. 

6)  Data words are read from the internal FIFO and written out into the external hardware 
FIFO (RFIFO). When a counter decremented from the length field indicates that the end 
of the packet has been reached, an End-Of-Packet flag is appended to the last data word 
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and header construction is started again. 

4.6.2.5 259M Video packet disassembly 

The video output side of the Video PLPE withdraws packets from the hardware FIFO 
(TFIFO) and removes video words to reconstruct the outgoing 259M serial stream. The 
design waits for TFIFO to reach half full, then begins withdrawing video data at a default 
rate set by the DDS2 clock (27.000000 MHz for SMPTE 259M). The following 
operations are then performed on the data stream: 

1)  IP, UDP, and RTP header information is extracted from the data stream. A checksum 
is calculated across the IP header information and compared to the last 16 bits of the 
received header; if they do not match, an error is flagged in the VOUT_FLAGS register 
and the IP_HDR_ERRS counter is incremented.  

2)  Packet sequence number checking is done using the 32-bit sequence number 
contained in the extended RTP header (16 bits in the first header word and 16 bits in the 
fourth header word). Counts are kept of sequence number mismatches of ±1, ±2, ±3, and 
>3, and exported to registers. 

3)  Data is placed in a shallow internal FIFO (64 words deep). This is necessary so that 
the video stream is uninterrupted while header processing occurs.  Reads are done from 
the external hardware FIFO (TFIFO) as long as the internal FIFO is less than half full. 

4)  When the internal FIFO reaches half full, a 16-state machine reads data from the 
internal FIFO and extracts 10-bit video words from the 32-bit wide data. The state 
machine is reset at the start of every packet to maintain synchronization, since packets are 
constructed in 20-byte multiples and the state machine should repeat the same state every 
20 bytes for a continuous video data stream. 

5) If the internal FIFO ever goes empty (if the video data stream is interrupted, for 
example), the video data conversion state machine is stopped and must be re-entered 
from the start sequence above. 

4.6.2.6 Video PCI interface 

The Video PLPE PCI interface is similar to the Framer PCI interface. The design is a 
target-only PCI interface (i.e., cannot act as bus master) written in the Protocol Compiler 
graphical programming language. The design requires 5 clocks for a PCI transaction 
(read or write) because additional wait states added to the Framer PCI design were left in 
the PLPE PCI design to assure reliability. The PCI design uses address bits adr[26:24] to 
determine the target FPGA; for the PLPE these bits are set to “010”. Addressing for the 
registers in the PLPE is built into the PCI design block (see the Video PLPE 
Specification for addresses and descriptions of the registers). 

4.6.2.7 Video design verification 

Verification of the Video PLPE transmit and receive designs was done using test video 
data generated in a Protocol Compiler test bench. When the logic was correct, timing 
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simulations were done using the Quartus FPGA simulator. Finally, testing was done 
using video test signals in the laboratory. Capture and analysis of standard definition 
video was done using a Tektronix WFM601 video waveform monitor, and high definition 
testing was done using a Tektronix WFM1125 HDTV waveform monitor. 

4.7 Packet diagnostics 

4.7.1 Packet jitter measurements 
When carrying high speed real time traffic on an IP packet network, the network 
parameters that affect performance the most are packet loss and packet delay. Since the 
video traffic being carried is streaming real time data at rates up to 1.5 Gb/s, data that is 
delayed for any time greater than the buffer depth on the receive side (approx. 2.5 msec at 
HD video data rates) will effectively be “dropped packets”. In addition, large variation in 
delay between packets through the network can cause problems with video clock 
recovery on the receive side if the recovered clock is based on the average data arrival 
rate as is done here. For these reasons, it was decided to implement packet jitter 
measurements on live traffic through the network. 

Code was written for the Packet-over-SONET receive design that counts clocks between 
successive packets to determine packet inter-arrival time with a resolution of 13 nsec. 
Minimum and maximum values of the inter-arrival time are then determined over a 
period specified by the user and reported in the PLPE registers MIN_SPACE and 
MAX_SPACE. The feasibility of acquiring and producing histograms of all inter-arrival 
time data was explored, but was determined to be outside the scope of this project. 

4.7.2 Packet sequence number analysis 
Dropped packets in a packet flow containing real-time video traffic result in missing 
video information. Missing information in the recovered video stream will result in 
glitches in the displayed video; if video timing is lost, the degradation may be as severe 
as loss of several video frames. Consequently, it was decided to check packet sequence 
numbers to determine if packets are missing from the stream. 

The RTP packet header used for transporting video data contains a 16-bit sequence 
number in its default header. This was augmented to 32 bits for a  SMPTE 292M RTP 
payload so that sequence numbers do not wrap around too rapidly (a 16-bit sequence 
number will wrap in approximately 5 seconds for the default packet length of 564 bytes 
at HD video data rates). The sequence number is extracted from the header and compared 
to the previous sequence number in the Video PLPE design. Sequence errors are reported 
in the VOUT_FLAGS register and counted in the VOUT_SEQ_ERRS register. 

When packets are dropped by the network, there will be gaps in the sequence numbers. 
However, sequence numbers will still be monotonically increasing (positive sequence 
number errors). To test the effect of dropped packets on performance, code was written 
for the CPE FPGA that drops a packet approximately every five seconds (enabled via the 
CPE CONFIG register, section 3.19). The loss of a single 564-byte packet was found to 
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produce visible glitches in the received video. Additional code was written for the Video 
PLPE that attempted to place “dummy video” in the video stream exactly equal in length 
to the video that was dropped by a lost packet. The “dummy video” did not contain any 
video timing reference signals, however, and it was found that this substitution did not 
improve perceived quality of the received video. 

When testing video transport across wide area networks (section 4), it was found that 
substantial numbers of sequence errors were reported for HD video transport in packets, 
even though the packet rates at the ingress and egress ports were nearly identical (within 
2 packets/sec for a 355,000 packet/sec stream). Additional logic was added to the Video 
PLPE design to keep separate tallies of packets with sequence numbers both larger and 
smaller than they should have been. It was discovered that substantial re-ordering of 
packets occurred at high packet rates. In several experiments across wide area networks it 
appeared that while no packets were being lost, many packets were placed out-of-order in 
the data stream (i.e., negative sequence number errors). 

4.8 Gigabit Ethernet 

4.8.1 Gigabit Ethernet design objectives 
Gigabit Ethernet (GbE based on IEEE802.3, IEEE802.3z) and 10 Gigabit Ethernet 
(10GbE based on IEEE802.3ae) are significant protocols for the present and the future. 
Modern day organizations depend critically on their local area networks (LANs) to 
provide connectivity of a growing number of mission critical data and communications 
services. The ubiquitous 10Mbps 10BASE-T has already been supplanted with the 
leading choice, 100BASE –T, which has ten times more transport capacity. This growing 
number of 100BASE-T connections has created the need for even higher speed network 
technology at the backbone and server level. This is being provided in a smooth upgrade 
path through the use of Gigabit Ethernet. This trend for yet another order of magnitude 
improvement is already driving metro and some core networks to roll out 10GbE 
transport services.  

The UNAS System Requirements Document states Gigabit Ethernet, following 
IEEE802.3, full duplex optical transport over fiber, will be implemented. This requires 
implementation of the following sublayers of the Physical and Data Link layers according 
to 803.3: 

• PMA - Physical Medium Attachment. PMA provides conversion of data path 
width to and from ten bits if needed, ten-bit code alignment 

• PCS - Physical Coding Sublayer. The PCS function accepts MAC framed packets 
from the GMII interface, provides 8B/10B encoding and encapsulation into a 
code-group stream in the transmit direction, as well as decoding and extracting 
MAC framed packets from the received code group stream. The PCS layer 
provides the ability to communicate with the link partner equipment through the 
Auto negotiation functions. 
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• GMII - Gigabit Media Independent Interface. The GMII is designed to make 
differences among the various media transparent to the MAC sublayer. 

• MAC – Media Access Control. The MAC layer encapsulates user data within a 
MAC Frame, verifies the correctness of a received MAC Frame, including 
address filtering and discarding of packets not intended for the receiving MAC, 
and extracts user data from valid received frames. This device may optionally 
provide a Pause Control feature. 

Because the GbE function shares the network interface mezzanine card with SONET receive and transmit 
functions, this design is required to handle all necessary clocking and signal path width conversions. 

4.8.2 Summary of Work 

4.8.2.1 Design Approach 

The Gigabit Ethernet feature for the NGI UNAE was designed using the Verilog 
hardware descriptive language. Verilog was chosen because of its portability, because it 
lends itself to a structured, hierarchical design methodology, for it’s ease of simulation, 
because of control it provides over synthesis results, and because of the availability and 
quality of Software tools to support this language.  

The design structure itself is highly segmented and hierarchical in nature, in order to 
facilitate the re-use of repeated functional blocks, as well as to facilitate maintenance and 
modification. At the top level, the functions unique to Gigabit Ethernet are implemented 
in three FPGA’s. These FPGA’s are the MAC, the GMII, and the PMA-PCS FPGA. Each 
FPGA is further segmented into task specific blocks. For details on these functional 
blocks, see sections below. 

The design flow using the Verilog language consists of code and test bench generation, 
RTL simulation, front-end synthesis, back end synthesis, and timing-based simulation. 
After determining specific requirements for the design, the functions necessary to meet 
these requirements was divided logically, in a way that facilitates simulation, synthesis, 
and a logical structure that groups functions in a sensible manner. Once this is done, the 
synthesizeable code is written. For this design, the approach was to take each small 
function, write the synthesizeable code describing one or a group of modules, which 
provide a specific function. Each of these specific functions was then verified by writing 
a test bench which, through RTL simulation, verifies the intended behavior. The portion 
of the design was then synthesized in a stand-alone manner, in order to address any 
timing or synthesizeability issues at this point. Each section of the design was performed 
in this manner, typically beginning at the input of the transmit data path, and working 
through to the output. As each portion of the design is completed it is verified with all 
prior portions. Through this approach, each portion of the design is verified specifically 
while leveraging both design and simulation test bench efforts towards a top-level 
application.  
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4.8.2.2 Simulation and Test Benches 

The Gigabit Ethernet design was simulated using a test bench created using the Verilog 
language. There were four stages of simulation and verification performed during the 
design and debug of this system. First individual portions of each FPGA in the system 
(see section 3.15 for details on the Gigabit Ethernet system) were simulated with a 
functional (RTL) test bench designed to verify that specific portion of the design. Second, 
an RTL simulation was performed on each FPGA in the system. Third, the entire system 
was functionally simulated using a top level test bench. Finally the entire Gigabit 
Ethernet system design, consisting of three FPGA’s, was simulated using a Verilog 
model for each FPGA which included back-annotated timing information.  

This final test bench was designed to simulate as closely as possible the 
laboratory operating conditions, and included a behavioral model of the hardware FIFO 
utilized on the UNAE main board. The final test bench was structured such that it 
consisted of a top level test bench, a stimulus generation module, and various tasks 
which, when invoked by the stimulus module, forced stimulation of the design in a 
desired manner, and verified the resulting behavior of the design. The capabilities of this 
test bench include simulation of PCI bus cycles, as well as the creation of user traffic 
which was placed into the FIFO in the Transmit direction (coming from the backplane). 
The capability to execute bus cycles was utilized in a software-like manner to configure 
the system. The traffic generation capability could then generate traffic in the transmit 
direction. The transmit output of the design was tied to the receive input of the design, in 
the manner that a fiber loopback would use transmit data as receive data, and the system 
thus tested. The test bench had the capability to vary the packet rate, the inter-packet gap, 
and the contents of the packets. It also possessed the capability to extract received 
packets from the FIFO model, and verify the contents. Through the PCI interface, the test 
bench was also able to verify statistics gathering capability. The structuring of the test 
bench with various tasks to perform various functions allowed the testing to be quickly 
and easily modified, testing any or all functions of the design in any given simulation run. 
It also provided for a self checking test bench, such that it was not necessary to look at 
waveforms to interpret test results. The results could be dumped to the screen for 
immediate review, or stored to a file for later retrieval. 

MAC 

Functional Overview 

The Media Access Control (MAC) framing functions for the Gigabit Ethernet Interface 
implementation on the UNAE hardware are provided by the FPGA designated the PLPE 
for both POS and Video applications, referred to in this document as the MAC Framer. 
The hardware functions within the MAC Framer are limited to the MAC layer functions 
as defined in section 4 of IEEE 802.3, a FIFO interface, and a modified version of the 
Reconciliation Sub-layer Gigabit Media Independent Interface (GMII) as defined in 
section 35 of the same document. Additionally, a simple PCI interface allowing 
microprocessor access to a set of internal registers used for configuration and monitoring 
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is provided. The PCS layer functions (i.e. 8B/10B, auto-negotiation) are provided on the 
mezzanine by the PMA-PCS FPGA, and so are not defined in this section.  

Figure 19 shows a functional block diagram representing the functions provided by the 
MAC Framer. 

 

 
 

Figure 19  Functional blocks of MAC framer 

The MAC layer functions provided consist of the encapsulation of user data within a 
MAC Frame, the verification of the correctness of a received MAC Frame, including the 
identification and discarding of packets not intended for the receiving MAC, and the 
removal of user data from correctly received frames for presentation to the FIFO 
interface. This device may optionally provide a MAC Control (Pause Control ) feature 
that is not implemented. Each of these operations is described in detail in the following 
sections. 

Transmit FIFO interface 

The transmit FIFO interface performs two primary functions. First, under control of the 
microprocessor register set, the FIFO is configured to operate in the desired mode. 
Second, the interface performs FIFO read cycles when necessary, and monitors the TAG 
value to determine the beginning and end of user data packTets. These packets are then 
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handed off to the transmit framer state machine. 

Upon the detection of the FIFO asserting the half full flag, the Read FIFO state machine 
begins performing read cycles to extract data from the FIFO. In normal operation, data is 
continuously read until an end of packet TAG value is detected. In this manner, data is 
read from the FIFO one entire packet at a time. Since the CPE will not write data into the 
FIFO that is not a part of a user packet, the first word read from the FIFO after assertion 
of the half full flag should always be the first word of a packet, as indicated by the SOP 
value contained within the corresponding TAG bits (see Table 2 in section 4.3.2.2). The 
state machine verifies this value for each read packet operation. If this value is not 
correct, an error is assumed, and data is read from the FIFO until an EOP TAG value is 
encountered, thus re-establishing the Packet boundary. In this case of an errored SOP 
TAG value, the contents of the Transmit Errored Packet Count register are incremented, 
and data is read from the FIFO and discarded up until and including the word concurrent 
with the next EOP TAG. 

Transmit Framer State Machine 

The transmit Framer state machine accepts user packets from the Transmit FIFO 
interface, and encapsulates them within a MAC FRAME, as shown in Figure 20 and 
Figure 21.  The frame is constructed as it is transmitted, and is transmitted most 
significant byte first, as it is read from the FIFO. The frame construction operation 
utilizes a set of register stages, which it pre-loads with the portions that are pre-
determined of the MAC frame to be transmitted before the user data. The fields pre-
loaded in this manner include the Preamble, the Start Frame Delimiter (SFD), the 
Destination Address, and the Source Address. This pre-loading occurs at the point after 
power up and configuration when the transmit enable bit of Master Control Register is 
set, as well as immediately after the transmission of the last word of a packet.  

 

 
FCS / extension User Data Packets MAC Header  

 
Figure 20 Gigabit Ethernet user data encapsulation 

The first part of the MAC frame is the preamble. A field containing 0x55 in each of its 
seven octets, this portion of the frame is placed into the first two stages of a set of frame 
construction registers. Next, the Start Frame Delimiter (SFD), which contains a value of 
D5h, is placed in the most significant byte position of the second register stage. The third, 
fourth, and fifth stages are then preloaded with the contents of the Destination and Source 
Address registers. At this point, the pre-loading function is complete, and the Transmit 
Framer State Machine will remain idle until the FIFO indicates a packet is ready for 
transmission. 

 

 92 



 

EXTENSION 

FRAME CHECK 

PAD 

MAC CLIENT DATA 

LENGTH/TYPE 

SOURCE ADDRESS 

DESTINATION ADDRESS 

SFD 

PREAMBLE 7 OCTETS 

1 OCTET 

6 OCTETS 

6 OCTETS 

2 OCTETS 

4 OCTETS 

LSB Transmitted 1st

LSB MSB B0 B7 

Figure 21 Gigabit Ethernet MAC frame structure 

When the Transmit Framer State Machine detects that the FIFO half full flag has been 
asserted, it resumes the process of constructing the MAC Frame. The first word of user 
data is read from the FIFO, and the contents of the TAG are verified to be the value 
associated with a SOP (see Table 2, FIFO packet tags indicating packet data type). If the 
TAG value is incorrect, the FIFO is read, effectively dumping the data, until an EOP 
TAG is encountered. At this time the State Machine returns to the idle state until the half 
full flag is once again asserted. If the TAG value is correct, the first data word from the 
FIFO is placed into the 6th and 7th register stages, such that the least significant two bytes 
are placed into the most significant two bytes of stage 6, and the most significant two 
bytes are placed into the least significant two bytes of stage 7. The least significant two 
bytes of the first data word read from the FIFO represent the length field (in the case of 
IP packets). This value is also copied into the least significant two bytes of stage 6, and 
constitutes the Length Field of the MAC frame. It should be noted that this 
implementation does not currently support non-IP packet types, nor does it support 
packets of length greater than 1518 bytes. The second word of the IP packet is then read 
from the FIFO and placed in the 7th and 8th register stages, as are all subsequent packet 
words. As each user data word after the 2nd is read from the FIFO and placed into the 7th 
and 8th stages, the data currently stored in each staged is loaded into the corresponding 
lower numbered stage, with the first staged shifted into the Transmit GMII interface. In 
the case that any IPG limitations resulting from this architecture are deemed 
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unacceptable, two frame construction register sets will be used in an alternating fashion. 
In this manner, the second register set will be pre-loaded while the first is transmitting a 
packet.  

Data is continually read out of the FIFO and transferred to the Transmit GMII, until the 
EOP TAG value is encountered. When this occurs, reading from the FIFO stops. If the 
packet length is less than the MinFrameSize, and PAD insertion is enabled, a number of 
PAD data octets sufficient to increase the frame length to MinFrameSize is loaded into 
stages 7 and 8. Although not currently supported, the PAD data insertion function will 
allow insertion of PAD octets only in increments of four. Once the packet data and any 
required PAD data is loaded, the calculated FCS value is loaded into stages 7 and 8. 
Finally any necessary extension octets are inserted, and the remaining packet words 
contained in the register stages are shifted to the Transmit GMII interface for 
transmission. Once the entire packet has been shifted out of the register stages, the state 
machine again pre-loads the stages with the pre-determined fields, and stands idle until 
the half full flag is asserted, beginning the process again. 

The FCS value is calculated over the contents of the source address, the destination 
address, length, and LLC data and PAD octets. The FCS is a four-octet (32bit) value 
calculated using the following polynomial. 

G(x) = x32 +x26 + x23 + x22 + x16 + x12 + x11 + x10 + x8 + x7 + x5 + x4 + x2 + x + 1 

The resulting FCS word is placed into the registers such that it is transmitted in the order 
x31, x30, ….x1, x0. 

4.8.2.3 Gigabit Media Independent Interface (GMII) 

The MAC FPGA implements a modified version of the GMII as defined in section 35 of 
IEEE 802.3. The interface is modified for this application in two ways. The first change 
is the use of a 32-bit interface instead of an 8-bit interface. This requires the use of the 
tx_loc[1:0] and rx_loc[1:0] signals to indicate the location of the change indicated by 
changes in the status of the tx_en and tx_er signals. This also imposes some limitations 
on lengths of extensions and errors, as transitions in the combined state of these control 
signals can only occur once in every four octets of data. Second, the clock configurations 
are modified in order to support the 32-bit interface (31.125 MHz instead of 125). Clocks 
are driven from the PMA-PCS FPGA to the MAC FPGAError! Bookmark not 
defined., for both transmit and receive operations, in order to work within the context of 
the clock distribution architecture of the UNAE hardware. 

Transmit GMII 

The transmit GMII interface accepts MAC frames from the Transmit Framer State 
Machine, and creates the tx_en, tx_er, and tx_loc signals. The tx_loc signal is used to tell 
the PMA-PCS FPGA logic which octet within the 32-bit data word corresponds to the 
change in signal status indicated by the tx_en and tx_er signals. The possible encodings 
of the tx_en, tx_er, tx_data<7:0> are shown in Table 3, with each byte of the 32-bit 
interface representing a separate value of tx_data<7:0>.  
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Table 3 Transmit GMII control signal indications 

TX_EN TX_ER TXD<7:0> Description 

0 0 00 - FF Normal Inter-frame 

0 1 00 – 0E Reserved 

0 1 0F Carrier Extend 

0 1 10 – 1E Reserved 

0 1 1F Carrier Extend Error 

0 1 20 – FF Reserved 

1 0 00 – FF Normal data transmission 

1 1 00 - FF Transmit Error propagation 

 
Table 4 Transmit GMII  control signal indications 

TX_LOC[1:0] TX GMII Data Status 

00 All four bytes are valid data 

01 Only the most significant byte is valid data. 

10 Only the most significant 2 bytes are valid data. 

11 Only the most significant 3 bytes are valid data. 

 

Carrier extensions are not supported in this implementation, as they are defined only for 
half-duplex operation. Transmit error propagation is indicated by the Mac to the PCS 
layer via the GMII to request that the PHY deliberately corrupt the contents of the frame 
such that the receiver will detect the corruption and discard the frame. This is requested 
by the MAC Transmit GMII in the case that an error occurs during the construction of the 
MAC frame. Figures 35-3 and 35-4 in IEEE 802.3 depict the behavior of the transmit 
GMII signals. 

Receive GMII Interface 

The Receive GMII accepts MAC Frames from the PMA-PCS FPGA, via the GMII 
Bridge FPGA, using the rx_dv, rx_er, rx_data, and rx_loc, to delineate the frame within 
the received data stream. The Receive GMII implemented is modified from the 
implementation defined in section 35 of 802.3 in the same manner as the Transmit GMII.  

The operation of the Receive GMII is limited to normal inter-frame indication, false 
carrier indication, normal data reception, and data reception error. Permissible encodings 
as defined in IEEE 802.3, are shown in Table 5. Encodings other than those indicating in 
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the list of supported operations above, however, are not supported and shall be treated as 
errors. Normal frame reception is depicted in figure 35-8 of IEEE 802.3.  Reception with 
error is depicted in Figure 35-11 of IEEE 802.3. False carrier indication is depicted in 
Figure 35-12 of IEEE 802.3. 

Table 5  Received GMII Operation 

Rx_dv Rx_er Rx_data<7:0> Description 

0 0 00 – FFh Normal inter-frame 

0 1 00h Normal inter-frame 

0 1 01  - 0Dh Reserved 

0 1 0Eh False Carrier indication 

0 1 0Fh Carrier extend 

0 1 10 – 1Eh Reserved 

0 1 1Fh Carrier Extend Error 

0 1 20 – FFh Reserved 

1 0 00-FFh Normal Data Reception 

1 1 00-FFh Data Reception Error 

 

Receive Media Access Management 

The Receive Media Access Management detects the beginning of a received frame 
present on the Receive GMII when the rx_dv signal is asserted (see Figure 35-8 of IEEE 
802.3). If no Data reception error is indicated by a simultaneous assertion of the rx_er 
signal, the packet is passed on to the address filtering logic. If address filtering is enabled 
(see Master Control Register) the DA field of the received frame is verified against the 
programmed value for the MAC-FPGA’s local MAC address (contents of the SA 
Registers). If it is determined that the frame is intended for this MAC, the user data is 
aligned to a 32-bit boundary according to the contents of the rx_loc signal states during 
the first GMII bus cycle in which the rx_dv was asserted, and then passed on to the 
Receive Framer State Machine. If the DA field does not match, the incoming frame is 
discarded. If address filtering is disabled, the received frame passes through the filter 
logic to the Receive FCS Verification logic, regardless of the DA field contents. 

Receive FCS Verification 

For each frame received, a new FCS value is calculated. When this new FCS calculation 
is complete, the resulting value is compared to the value contained within the received 
frame’s FCS field. If this comparison verifies that the received FCS value is correct, no 
action is taken.  Should the received FCS valued be determined to be incorrect, the error 

 96 



 

is reflected by incrementing the contents of the Receive FCS Error Count Register.  The 
FCS Error Count register will also be incremented in the case that both the RX_DV and 
RX_ER signals are both assisted during frame reception. 

Receive Framer State Machine 

Regardless of the outcome of the FCS verification procedure, the receive framer state 
machine strips all header information, the FCS, any PAD data, and any extension data off 
of the incoming frame and hands the MAC Client Data portion of the frame to the receive 
FIFO interface for storage in the external First-in-first-out (FIFO) memory on the UNAE.  

Receive FIFO interface 
The receive FIFO interface accepts the MAC Client Data portion (IP packet) of the 
received frame from the Receive Framer State Machine, and loads it into the FIFO. The 
Receive FIFO interface also generates the TAG data field values associated with the 
status of each word of the packet data written into the FIFO. See Table 2 for details on 
specific values of the TAG data. The received packet and TAG data are written into the 
FIFO simultaneously by asserting the rx_fifo_wen signal. This signal remains asserted 
until the entire packet is written into memory. 

FIFO Configuration 

The receive FIFO configuration programming is under control of the MAC FPGA. 
Although the current implementation provides no mechanism by which to program the 
preset levels of the partial-full flags, the required signals are available within the FPGA. 
These configuration levels are currently used in their default mode. The Master Reset, 
Partial Reset, and FWFT signals are under microprocessor control via the Reset and FIFO 
Configuration/Status registers. The value corresponding to the desired mode of operation 
should be written to the FWFT bit in the FIFO Configuration/Status before a Master 
Reset for the FIFO is de-asserted in order to configure the FIFO. The bit defaults to one, 
selecting the FWFT operation mode if no write operation is performed. Transmit FIFO 
configuration is under control of the CPE FPGA. The CPE FPGA specification should be 
consulted for the specifics of Transmit FIFO configuration. 

MAC Control 

The MAC Control/Pause insertion functions are not supported in the initial version of this 
implementation, but may be added as an extension. 

4.8.2.4 Microprocessor Interface 

The microprocessor interface is provided as a target only, non-burst, PCI interface 
accessing a set of control and statistics registers. A subset of the functions defined in the 
PCI local Bus Specification are supported, including Memory Read, and Memory Write 
cycles. Interrupt Acknowledge, Special Cycles, I/O read and write cycles, configuration 
read and write cycles, burst cycles, and Memory write and invalidate cycles are not 
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supported in this implementation. For specific information on the access cycles 
supported, refer to the PCI Local Bus Specification, version 2.2. 

4.8.2.5 Design Hierarchy 

The PMA-PCS FPGA was designed in Verilog, and consists of twenty-one functional 
blocks. The structure created by these functional blocks is depicted in . The specific 
function of each modular block is described below. 

 

tbi_to_32b tbi_from_3
2b

iotra code aligtx data mu

tx_pcs_top rx_pcs_toa-neg sm conv 32b 8b

tx_cg_sm tx_oset_s

encode_8B_10

rx_pcs_s rx sync sm

decode_8B_10

pma_pcs_rega-neg_regs 

Ce_rr_sm Ce_kr_sm 

Ce_tr_sm 

pma_pcs_to

Figure 22  Gigabit Ethernet PMA-PCS FPGA design hierarchy 

pma_pcs_top:  

This is the top level module, instantiating and providing interconnect for mid-level and 
lower-level modules. This module also instantiates the DCM’s (Digital Clock Managers) 
used to generate internal clocks, and distributes these clocks and their associated reset 
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signals. A description of each of these clock domains is provided in the section on Clock 
Distribution. This module defines I/O buffers and, and registers data as it enters and 
leaves the part. Finally, this module controls data flow and clock output selection based 
upon the setting of the mode select bit as defined in the PCS Configuration Register.  

aneg_regs: 

This module provides the registers associated with the Auto Negotiation portion of the 
PCS functions provided for Gigabit Ethernet. The structure and usage of these registers is 
defined in clause 37 of IEEE 802.3 

pcs_regs: 
This module provides the register set used to control and monitor all functions of the part 

Iotran: 

This module provides an interface between data in a 32-bit format and the SONET 
transceiver. In a SONET mode of operation, this 32-bit data is exchanged directly with 
the mezzanine connector data bus. In a Gigabit Ethernet mode of operation, 32-bit data is 
exchanged with the input/output of the path width conversion FIFO’s utilized in the 
tbi_from_32b and tbi_to_32b modules. In addition, due to the difference in the order of 
bit transmission between the two supported protocols, the conversion must be adapted to 
the selected protocol. 

tx_pcs_top: 

This module instantiates the three lower level modules (tx_cg_sm, tx_or_set_sm, and 
encode_8B_10B) that together form the Transmit PCS functions. 

rx_pcs_top: 

This module instantiates the lower level modules that together perform the Receive PCS 
functions necessary for GbE operation. 

tbi_from_32b: 
This module, instantiated by the pma_pcs_top module, provides the FIFO and associated 
control logic necessary to convert received 32 bit data from the iotran module to a ten-bit 
wide format to be provided to  

the code_align module. 

tbi_to_32b: 

Instantiated by pma_pcs_top, this module provides the FIFO and associated logic 
necessary for conversion from the ten-bit wide data path output of the 8B/10B encoder to 
a 32-bit format for presentation to the iotran module. 
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ce_kr_sm, ce_rr_sm, ce_tr_sm: 

These modules together form the check_end function, which is a portion of the PCS 
Receive state machine. Each module of check_end provides an indication of the possible 
end sequences indicated by the name – i.e. ce_kr_sm checks for end sequences which 
have |K|R| as the first two code groups of the sequence. 

code_align: 

This module provides the ten-bit alignment of the received code words based on the 
detection of a Comma within the incoming bit stream. 

conv_32b_8b: 

This module provides a conversion of data from the 32-bit format, provided across the 
mezzanine connector interface, into an 8-bit format provided to the PCS functions, such 
as 8B/10B encoding. 

rx_pcs_sm: 

This module implements the PCS receive state machine as depicted in Figure 36-7a/b in 
IEEE 802.3.  

rx_sync_sm: 

This module implements the Receive Synchronization state machine as depicted in figure 
36-9 of IEEE 802.3. 

tx_cg_sm: 

This module implements the transmit code-group state machine as depicted in figure 36-6 
of IEEE 802.3. 

tx_data_mux: 
This module provides data path selection based upon the selected mode of operation. In 
addition, this module creates the correct bit transmission sequence. This is necessary due 
to the LSB first transmission of GbE data, as opposed to the MSB first nature of 
transmission of SONET data. 

tx_or_set_sm: 

This module implements the Transmit Ordered Set State Machine as depicted in Figure 
36-5 of IEEE 802.3. 

 

 

 100 



 

4.8.2.6 Gigabit Ethernet mode PMA-PCS FPGA 

Functional Overview 

The PMA-PCS FPGA provides the Physical Coding Sub-layer (PCS) and Physical 
Medium Attachment (PMA) functions for the Gigabit Ethernet operation of the UNAE 
hardware when configured for Gigabit Ethernet mode. It must also provide 16 to 32 bit 
data path width conversion, as well as clock division, when configured to support the 
SONET mode of operation. 

The PMA functions are required because the IC’s on the mezzanine do not perform these 
operations, as a standard Gigabit Ethernet PHY would. These include the conversion of 
data path width to and from ten bits (SONET transceiver provides a 16-bit interface), as 
well as the ten-bit code alignment when in Gigabit Ethernet mode. In SONET mode, the 
part performs a 16 to 32-bit conversion. It then bypasses all PCS functions, which are 
specific to GbE, and provides/accepts 32-bit data to/from the mezzanine Connector.  

The PCS function provided for Gigabit Ethernet operation accepts MAC framed packets 
from the GMII interface, provides 8B/10B encoding and encapsulation into a code-group 
stream in the transmit direction, as well as decoding and extraction of  MAC framed 
packets from the received code group stream. The PCS layer also provides the ability to 
communicate with the link partner equipment through the Auto negotiation functions. 

Transmit Data Path 

When configured for a Gigabit Ethernet operation, transmit data is registered into the 
PMA-PCS FPGA in a 32-bit, 31.25MHz bus from the mezzanine connector. This data 
path essentially functions as a modified GMII, in that data is presented on a frame-by-
frame basis, along with a TX_EN and TX_ER signal. In addition, a tx_ctl_loc signal is 
provided across this interface in order to indicate the location within the four-byte field of 
the event indicated by any change of the combined state of the TX_EN and TX_ER 
signals. Once registered within the part, the combination of data and control signals is 
passed on to the conv_32b_8b module. Here the data and control signals are converted to 
an 8-bit, 125 MHz format to be provided to the Transmit PCS logic in a standard 8-bit 
GMII format. The permissible encodings of TX_EN, TX_ER, and TX_DATA<7:0> are 
recreated, from Table 35-1 in IEEE 802.3. , in Table 4 Transmit GMII  control signal 
indications. 

The Transmit Ordered Set State Machine interprets the data and control inputs from the 
conv_32b_8b module, and generates ordered sets as defined in Table 36-3 of IEEE 802.3. 
The generated ordered sets are then encoded into 10-bit code groups by the combined 
operation of the Transmit Code-Group State Machine and the encode_8B_10B module.  
The result of the operation of these Transmit PCS functions is the encapsulation of MAC-
framed packets within a contiguous stream of 8B/10B encoded code-groups, with idle 
pattern ordered sets being transmitted in the absence of a packet. The Transmit Ordered 
Set State Machine and Code-Group state machines also support the transmission of 
configuration data. The Auto Negotiation function provides a XMIT control signal to 
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these state machines, which can take on one of three values. These values are: 
configuration, idle, and data. When XMIT=idle, the transmit PCS function provides a 
continuous stream of |I| (idle) ordered sets to the PMA device for transmission. When 
XMIT=configuration, the transmitted data stream consists of an alternating pattern of the 
two, four byte (|C1| and |C2|), configuration ordered sets. In the case that XMIT = DATA, 
the Transmit PCS places encapsulated MAC frames within an otherwise continuous 
transmission of idle ordered sets, as previously described. 

The continuous encoded data stream provided by the Transmit PCS function takes the 
form of a ten-bit bus parallel data interface operating at 125MHz. In most Gigabit 
Ethernet implementations, this ten-bit interface would constitute the connection between 
the MAC chip, which typically provides the PCS functions, and the PHY chip, which 
provides the PMA and PMD operations. In this application, however, the requirement is 
for the hardware to support both Gigabit Ethernet and SONET modes of operation. As a 
result of this requirement, the PHY chip chosen provides the SERDES and CDR 
functions via a 16-bit interface. In order to operate correctly, the 10-bit data interface 
must be converted to a 16-bit format, then provided to the PHY chip at a 1250Mbit/s line 
rate, such that the LSB is transmitted first. Because the clock frequency required to create 
1250Mbit/s in a 16-bit format (78.125MHz) is a non-integer multiple of the frequency 
required to create 1250Mbit/s in a 10 bit format (125MHz), clock frequency synthesis 
must be used to generate the proper clocks. This clock synthesis process (see section 
4.8.2.10 Clock Distribution.) results in a situation where no known edge relationship 
exists between the resulting clocks, even though one is directly derived from another. In 
order to overcome issues created by the resulting clock , and to provide for data path 
width conversion, an extremely wide FIFO is employed. The FIFO width was chosen to 
be 160 bits, because 160 is the lowest common denominator between 10 an 16, thus 
avoiding the need to perform partial word writes. The transmit FIFO control logic 
performs a write operation once every 16 125MHz clock cycles. Once a certain fill level 
has been reached, the logic performs a read operation once every 5 39.0625MHz clock 
cycles. Data is handled in a 32-bit format in order to be able to utilize the same circuitry 
in the iotran module used in a SONET mode of operation.  

The 32-bit data enters the iotran module, and is registered, before being converted to a 
16-bit 78.125MHz format. Transmit output data is driven via the LVPECL differential 
drivers provided by the FPGA to connect with the SONET transceiver. 

Receive Data Path 

16-bit data is received from the SONET transceiver at 78.125MHz via the differential 
LVPECL inputs on the FPGA. Once received, data is registered, and then converted to a 
32-bit 39.0625MHz format. Once in a 32-bit format, received data is clocked into the 
Receive FIFO by the associated logic 160 bits at a time, once every 5clock cycles. After 
exiting a reset state, the FIFO is allowed to fill to a specified level. Once this level has 
been reached, data is read from the FIFO by the controlling logic once every 16 125MHz 
clock cycles, thus providing a received data path ten bits wide operating at 125MHz.  
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Because of the previously mentioned design requirements, the received data has no 
alignment with respect to the ten-bit word. The PMA-PCS FPGA must perform this 
alignment function, which would normally be provided by a GbE PHY chip. The code 
alignment module implements this function. Essentially, this is accomplished by two 
parallel sets of 10-bit wide and ten word deep register stages. One of the register stages 
serves as a search mechanism. Each possible alignment of the incoming data is created by 
shifting the alignment a single bit at each stage. The Comma pattern, which is defined to 
occur only in the |K28.5| code group specifically for this purpose, is searched for in each 
stage. When this pattern is found in its proper alignment, a comma detect event occurs. If 
the logic is enabled to detect commas (this depends upon both the user configuration and 
the state of the Receive Synchronization State Machine), the detected new alignment 
value is registered. This registered alignment value is a ten-bit representation, where each 
bit indicates the need of the corresponding stage of the second set of registers to shift the 
bit alignment, or not. Thus, if shifting the incoming data 3 times creates the proper bit 
alignment, the first three bits of this alignment value would be high, and the last seven 
would be low. The second set of registers, controlled by this value would shift the 
received data the proper number of bits, and then pass it unchanged through the 
remaining stages. 

Once the received ten-bit code groups have been properly aligned, they are decoded into 
8 bit words by the 10B/8B decoder. The Receive PCS State Machine and the Receive 
Synchronization State Machine then interpret the byte-wide data. The Receive 
Synchronization State Machine establishes the code-group synchronization by monitoring 
the occurrence of commas within the received bytes, and verifying their proper 
sequencing.  The Receive PCS state machine extracts MAC framed packets from the 
continuous received byte stream. The received packets are then transmitted, along with 
the RX_DV and RX_ER signals generated, to the data path conversion logic. Provided by 
the conv_32b_8b module, this logic performs a 8 to 32-bit path width conversion, 
converts the RX_DV and RX_ER from 125MHz to 31MHz  signals, and creates the 
RX_LOC signal that indicates which of the 4 bytes within a 32–bit word corresponds to 
the SOP, EOP, or error indicated by the status of the RX_DV and RX_ER signals. Once 
in a 32-bit format, the received data is selected by the mode selection mux, registered at 
the output block, then driven off chip as the received data. 

4.8.2.7 Auto Negotiation: 

Functional Overview 

Auto negotiation for Gigabit Ethernet provides a means for a local device to advertise it’s 
operational modes to a link partner and for the link partner to advertise it’s operational 
modes to the local device. The two devices communicate, via handshake messages, to 
establish the common mode of operation to be used on the link. The PCS layer provides 
this ability to communicate with the link partner for Auto negotiation. 
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Ordered Sets 

Auto Negotiation function exchanges information between two devices that share a link 
segment and automatically configures the two devices according to their abilities.  Auto 
Negotiation is performed using /C/ and /I/ ordered sets (defined in IEEE 802.3 Clause 
36).  Upper layer protocols or packet data are not allowed to communicate on the link 
until Auto Negotiation has completed. 

Start and Restart 

The Auto Negotiation function must be enabled under the following conditions: 

• The link is initially connected. 

• Either device is powered up. 

• Either device is reset. 

• Either device has been issued a renegotiation request. 

During operation, receipt of an Auto Negotiation packet will restart the negotiation 
process to re-establish the link.  At this time, the data path will be disabled by the Auto 
Negotiation software. 

The Auto negotiation implementation for NGI Gigabit Ethernet supports only the basic 
features necessary to interoperate with similar equipment. This includes the exchange of 
base page messages indicating equipment capabilities, but not Next page operation. Pause 
control features are also not supported. 

The implementation of the auto-negotiation was divided between hardware and software 
in order to provide a more flexible solution, as well as to best make use of resources 
available. The role of the hardware portion of the feature is to insert base page messages 
into Configuration ( |C| )ordered sets in the transmit direction and to extract them from 
the incoming bit stream in the receive direction. When a new message is received three 
consecutive times without error, the hardware registers the received message, and asserts 
an interrupt to software indicating that a new message is available. The role of the 
software in the system is to process the received messages and generate the transmit 
messages via the implementation of the auto-negotiation state machine as defined in 
IEEE 802.3  Figure 37-6.  

4.8.2.8 SONET Mode PMA-PCS FPGA 

Transmit Data Path 

When the part is configured to support SONET operation, the transmit data path flows 
directly from the input registers to the data selection mux which selects the data to be 
input to the iotran module. The iotran module performs a path width conversion from 32-
bits to 16, then drives the transmit data out using the LVPECL output buffers at 
155.52MHz.  
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Receive Data Path 

Received SONET data is brought into the part at 155.52MHz via LVPECL input buffers. 
It is then converted to a 32-bit path width. The received SONET data is provided to a 
mux controlled by the mode select bit, then registered and driven out towards the 
mezzanine connector on rx_data_out[31:0]. 

4.8.2.9 Microprocessor Interface 

Access is provided to internal registers in the PMA-PCS FPGA via an 8-bit 
microprocessor interface. The interface consists of, eight address lines, eight data lines, a 
chip select line, and separate read and write enable lines. 

 

4.8.2.10 Clock Distribution.  

Clock distribution within the PMA-PCS FPGA is greatly complicated by the need to 
support both SONET and GbE modes of operation with a single PHY. Conversion from 
16 to 32-bit bus width in a SONET mode of operation requires the generation of half rate 
clocks for distribution on to the UNAE board (both transmit and receive clocks are driven 
from the SERDES to the PMA-PCS FPGA, and then from the FPGA to the UNAE). In 
addition, because the PHY chip provides a 16-bit data bus, which must be converted to a 
ten-bit format for GbE PCS functions, the M/N Clock Frequency Synthesis functions 
provided in the Xilinx DCM is used to generate the necessary non-integer multiple clock 
(125MHz generated from 78.125MHz). This 125MHz clock is then divided by four to 
provide data in a 32-bit wide format to the UNAE. The final output clocks are selected, 
using a mux, from the GbE divide-by-four and the SONET divide-by-two clocks. 

By performing all of these functions within the PMA-PCS FPGA, the existing clock 
circuitry on the UNAE can distribute two clocks (one for transmit and one for receive) to 
all other FPGA’s as designed. This approach also allows this clock to run at 31.125 MHz, 
which makes the MAC and Framer FPGA design for this application simpler, with much 
looser timing constraints. The result is a more complicated clock network within the 
PMA-PCS FPGA, as shown in the PMA/PCS Specification. 

The following is a list including a brief description of each of the clocks within the PMA-
PCS FPGA: 

• TX_CLK_IN: This can be either 78.125MHz (Gigabit Ethernet) or 155.52 MHz 
(SONET) depending upon the mode of operation. This in an input sourced from 
the AMCC 3057. It provides the input for the transmit 8/5 clock multiplier, as 
well as the clock for transmit data as it is driven to the 3057. 

• TX_CLK_DIV2: This clock is derived from the TX_CLK_OUT, and will be 
either 39.0625MHz (Gigabit Ethernet) or 77.76MHz (SONET) depending upon 
the mode of operation. In SONET mode, this clock will be selected as the clock 
for transmit data as it is driven into the part from the mezzanine connector, as well 
as being driven to the UNAE main card for use as the transmit timing source. In 
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Gigabit Ethernet mode, this clock is used to extract data from the transmit FIFO, 
and into the 32 to 16 bit converter. 

• TX_CLK_125: This clock is used exclusively in Gigabit Ethernet mode. It is 
derived from the TX_CLK_OUT, using the clock synthesis feature of the DCM in 
the Virtex2, and is an 8/5 multiple of the 78.125 MHz clock.  This clock is 
provided to the 32 bit to 8 bit converter, the Ordered Set State Machine, the 
Transmit Code Group State Machine, and the input control logic of the transmit 
FIFO. 

• TX_CLK_31: Used exclusively in Gigabit Ethernet mode, this clock is a divide 
by 4 derivative of the TX_CLK_125. When in Gigabit Ethernet mode, it provides 
the input clock for the 32 bit to 8 bit conversion logic, as well as being selected as 
the source of TX_CLK_IN. 

• TX_CLK_OUT: This is the signal selected to be provided to the UNAE main 
board as the transmit reference clock. In SONET mode, it is a buffered version of 
the TX_CLK_DIV2 signal (77.76 MHz), and in Gigabit Ethernet mode it is a 
buffered version of the TX_CLK_31 signal (31.25 MHZ). 

• RX_CLK_IN: This is the receive clock provided as an input to the FPGA by the 
AMCC 3057. In a Gigabit Ethernet mode it will be 78.125MHz, and in a SONET 
mode it will be 155.52MHz. This clock is used to move data into the receive 16 to 
32 bit converter, as well as providing the reference for both RX_CLK_DIV2 and 
RX_CLK_125. 

• RX_CLK_DIV2: This signal is a divide-by-2 derivative of RX_CLK_IN. In a 
SONET (77.76MHz) mode it is selected as the source of the RX_CLK_OUT 
signal, and in a Gigabit Ethernet (39.0625MHz) mode it serves to clock data out 
of the 16-to-32 bit converter and into the receive FIFO.  

• RX_CLK_125: This clock (125MHz) is an 8/5ths multiple of RX_CLK_IN, and 
is used only in Gigabit Ethernet mode. It provides clock to the Code Group Align 
module, The 10B/8B decoder module, the Receive Synchronization State 
Machine, as well as serving to clock decoded data bytes into the 8 bit to 32 bit 
converter, and as a reference for RX_CLK_31. 

• RX_CLK_31: This clock is a divide-by-4 derivative of RX_CLK_125. Utilized 
only in a Gigabit Ethernet mode, it is used to clock data out of the 8 bit to 32 bit 
converter, and is the source for RX_CLK_OUT. 

• RX_CLK_OUT: Driven to the UNAE main board as the receive synchronization 
source, this clock is created by a MUX selecting RX_CLK_31 when in Gigabit 
Ethernet mode, and RX_CLK_DIV2 when in SONET mode. 

4.8.2.11 Test Approach 

Testing in the lab began in earnest with the verification of the microprocessor accessed 
registers. Once basic read/write capability was verified, the parts were configured for 
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normal operation, and the clock synthesis features in the PMA-PCS FPGA were verified. 
This was a necessary first step, as these clocks served as the data path clocks for all other 
portions of the system. Upon verification of system clock generation and distribution, the 
testing moved on to data path verification. 

Verifying the passage of packets through the data path was done, one section at a time, 
from the backplane out. This approach was used because a known data source – i.e. the 
SONET design - was available at this time. Using an IXIA IP tester to transmit packets to 
the SONET design, packets were transmitted across the backplane. Since the Gigabit 
Ethernet system implements the same CPE code as all other UNAE systems, the data 
path into the FIFO was already known to be good. Thus, the unknown data path was 
tested one portion at a time using loop backs. With each portion verified, the loopback 
could be stepped a bit further out from the FIFO. So the MAC FPGA data path was 
verified first, and then the communication between the MAC and the PMA-PCS FPGA 
was verified. 

Once the data path was verified out to the point where PCS layer encapsulation begun, 
the testing approach was changed to working in towards the backplane from the optical 
interface. This approach was taken because it allowed a subset of the PCS layer functions 
to be verified first, and then slowly add to that subset. More specifically, the ability of the 
system to interoperate with a known Gigabit Ethernet interface in an IDLE only mode 
was tested first. This means testing the simplest form of interaction between to peers 
without any packets or configuration messages involved. Next, the ability to exchange 
packets was verified, and finally the ability to exchange configuration messages and 
perform Auto Negotiation was tested. 

A major limitation in the debug and verification of the PCS layer characteristics was the 
lack of a piece of test equipment, which provided easy access to the bit-level information 
which comprises the PCS layer. This obstacle was overcome to some degree by the use of 
a Communication Signal Analyzer equipped with an optical interface and a serial trigger. 

Results of system testing of Gigabit Ethernet and the functional blocks described here are 
provided in section 5.2.1. 

4.9 All Optical Label Switched Router Interface 

4.9.1 OLSR Interface design objectives 
For the last nine months the University of California at Davis and Tektronix have been 
collaborating to develop a client interface for an optical label switching network (OLSN).  
The main function of the client interface is to provide an interface between the OLSN and 
a connecting network such as an IP over SONET network as shown in Figure 23. The 
ingress client interface is responsible for modifying the incoming packets to a format that 
is suitable for transmission through the OLSN.  This includes adding the appropriate label 
with corresponding routing and control information.  The egress client interface receives 
packets from the OLSN and converts them back into the format the connecting network 
needs.  The OLSN is an unslotted, variable packet length network that uses labels to route 
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each packet to its destination.  Due to optical switching in the OLSN, at each egress client 
interface, the clock needs to be recovered from the received data.  As a result, this 
network is asynchronous and differs from a SONET network in that it does not have 
empty frames being sent when there is no data being transmitted.  

OLS Network
Egress 
Client 

Interface

Ingress 
Client 

Interface

IP over 
SONET 
network

IP over 
SONET 
network

 

Figure 23 Overall network including all optical label switched and SONET network domains 

The UNAS will be used as the ingress and egress client interfaces to the OLSN.  The 
client network uses the packet over SONET (POS) protocol. Each UNAS will have two 
UNAEs, a POS UNAE and a UC Davis UNAE.  A UNAE contains two types of boards, a 
main board and a mezzanine board.  The POS UNAE and the UC DAVIS UNAE differ 
only by their mezzanine boards. The POS UNAE is capable of transmitting and receiving 
OC-48 POS.  The UC Davis UNAE uses HDLC encapsulation to transmit and receive IP 
packets to and from the OLSN. The IP packet could be encapsulated using any method, 
but HDLC was chosen since it is a standard.  

In the ingress client interface, the POS UNAE is used to receive and convert the POS 
signal into bare IP packets.  The packets transverse the backplane data bus to the UC 
Davis UNAE where the IP packets are encapsulated into HDLC frames and an optical 
label is assembled.  This path will be referred to as the ingress path. 

In the egress client interface, the UC Davis UNAE is used to receive HDLC frames from 
the OLSN, decapsulate the IP packets, and send them to the backplane data bus.  The 
POS UNAE pulls the bare IP packets from the backplane data bus, converts them into a 
POS signal, and sends them to the client network.  This path will be referred to as the 
egress path. Figure 24 illustrates the ingress and egress paths.  
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Figure 24. Ingress and Egress Paths of the Client Interface 

Referring to Figure 4 the performance of the UNAE in a packet over SONET (POS) 
application has been covered in detail above in section 4.  The POS card interfaces to 
either an OC-48 router or another source of POS to deliver bare IP packets to the 
backplane. 

For the UC Davis UNAE, the lower data path in Figure 4 is the ingress path.  The CPE is 
to receive IP packet data from the backplane data bus.  It is to outputs the IP packet data 
to the FIFO.  The PLPE fetches the data from the FIFO.  The PLPE generates the label 
from the IP header data and encapsulates the data in HDLC.  The data and label are then 
sent to the Framer FPGA.  The framer scrambles the data and sends both the data and 
label to the mezzanine card where they are output to the OLSN.  The framer also 
generates extra HDLC preamble bytes that are inserted at the head of the packet and are 
used by the egress UNAE to recover the clock from the data.  The clock recovery chip on 
the egress mezzanine board specifies 250µs of data is required before the PLL locks and 
a clock is recovered. The extra preamble bytes could be eliminated if there was a 2.5Gbps 
burst mode receiver available. This is the role the BRAD was to have played.  

The upper data path in Figure 4 is the egress path for the UNAE used by UC Davis.  
HDLC encapsulated IP packets are received from the OLSN. The Optical Router Client 
mezzanine card receives data that has already been converted from the optical domain to 
the electrical domain. It takes the data and extracts the clock using the preamble bytes.  
The data is passed to the framer FPGA where it is descrambled and byte aligned. The 
byte aligner is required since the OLSN is asynchronous. Consequently the bits are not 
byte aligned. The PLPE then extracts the HLDC frame and sends it to the CPE.  Finally, 
the CPE sends the data to the POS UNAE over the backplane data bus.  

Tektronix supplied a Platinum platform, controller module, four UNAE boards and four 
2469XC optical mezzanine cards, and a full VxWorks build environment to UC Davis for 
this work. There are three main modifications to the FPGA code in the UNAE (illustrated 
in Figure 25) which UC Davis had to make to create a working 2.5Gbps Optical Router 
Client interface. These modifications enabled: 
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1. Generation of the label in the PLPE ingress path (green hatched) 
2. Addition of a data multiplexer to include extra HDLC preamble bytes in the 

framer ingress path (blue hatched) 
3. Addition of a byte aligner in the framer egress path (yellow) 

In the next sections each of these three modifications will be discussed in detail.  
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Figure 25. UC Davis UNAE Modifications 

 
 

4.9.2 Summary of Work 

4.9.2.1 Label generation and coding approach 

The work on this portion of the project was done partly by UC Davis researchers and 
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partly by the Tektronix NGI team. For the data flow to the ingress side of the OLSR, the 
architecture and FPGA code developed for label generation, preamble generation, and 
framer scrambling was done by UC Davis as shown in Figure 25. They also implemented 
the data descrambler, the frame synchronization/Byte aligner in Figure 25 for the egress 
side of the OLSR. Tektronix engineers provided consulting and some working code 
elements that could be modified for the blocks above.  

Figure 26 shows the inputs and outputs of the label generation module.   
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Data[31:0]
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VP
Label [1:0]

LabelValid

Suspend

 
Figure 26 Input and Outputs of the Label Generation Module 

There are four inputs: Data, SP, VP, and Suspend, which come from the data pipeline in 
the PLPE FPGA. Data is the next 32-bits of the IP packet, SP is active when a start of 
packet occurs, VP is active when there is valid data on the 32 data lines, and Suspend is 
active when the data pipeline is suspended and therefore not sending data out.  The 
module takes the information in the IP packet header and makes a label useful to the 
OLSN optical interface.  The first output of the module is a 2-bit label.  Two bits are 
needed since the internal clock rate of the FPGA is 78 MHz and the final label output 
needs to be double the clock rate, 155Mbps.  The second output is the LabelValid signal 
that is active during the first clock cycle of a valid label. The label is made from 
information in the IP header of each IP packet. 

Figure 27 shows a color-coded IP header and the label that is derived from each colored 
or patterned field of the header. 
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Figure 27  IP Header and Label Structure 

The fields of the label are the following: 

 
• Preamble: A unique 8-bit sequence. It is used to detect the start of a valid label. 

Each core router in the OLSN detects this unique 8-bit sequence to indicate the 
arrival of a new packet and uses the remaining fields of the label to intelligently 
switch the new packet.  This field is constant for all routers. 

• Destination: 4-bit destination address of the new packet. This is the address of the 
egress client interface.  The core routers use this field to perform the routing table 
look up and switch the packet to the correct output.  The ingress client interface 
generates this address by looking at the 32-bit destination IP address of the IP 
header.  

• Priority: The priority of the corresponding packet. This field allows priority based 
routing, which is an essential feature to provide differentiated classes of service.  
The ingress client interface takes the 8-bit type-of-service field in the IP header 
and coverts it into a 2-bit priority.  

• TTL: Similar to IP (Internet protocol) the 4-bit TTL or time-to-live field 
represents the maximum number of routers a packet may switch through before it 
is dropped. The TTL is effectively a hop count limit on how far a packet can 
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propagate through the network. The ingress client interface assigns this 4-bit 
value by looking at the 8-bit TTL value in the IP header.  

• Packet Length: This field contains the 4-bit encoded length of each incoming 
packet. The ingress client interface assigns this value by looking at the 16-bit 
datagram length field in the IP header.  

• Source: 4-bit source address of each packet.  This is the address of the ingress 
client interface and will be constant for each client interface. 

4.9.2.2 Label Generation Module 

Figure 28 shows the architecture of the label generation module.  The architecture is 
designed in a manner that allows easy changes and expansions.  There are seven code 
units that make up the label generation module.  These are the input register unit, the 
input enable state machine, the output register/output enable state machine, and four code 
blocks for calculating priority, length, time to live and destination address label elements. 

The first unit is the input register unit.  All input registers are connected to some portion 
of the 32-bit Data input. These registers are: 

 

Register Length Function Connected to data lines 

I_tos 8 bits IP header type-of-service 23-16 

I_length 16 bits Datagram length in bytes 15-0 

I_ttl 8 bits IP header time-to-live 31-24 

I_dest 32 bits Destination address 31-0 

 

The input registers are write enabled by the second unit, the input enable state machine 
(IUSM). Details of the state machine are provided in the “UC Davis Subcontract Final 
Report. The state machine starts when both SP (start packet) and VP (valid packet) are 
active. Using the three input signals the IUSM steps through the full IP header, extracting 
the appropriate header bits into the input registers. When the final state of the IUSM is 
entered, the state machine waits for the PLPE pipeline to start sending data.  This is 
indicated by a low value on the Suspend line.  Once data is being sent, the start signal is 
asserted during the next transaction. The start signal tells the output unit to start 
outputting the label.  

Following this, the IUSM either enters a wait state for SP and VP to be asserted again; or 
if SP and VP were both high during final state S7, the next label is processed.  

The third and fourth code units in Figure 28 are the output registers and output enable 
state machine (OESM).  There are six registers, one for each field in the label.  Two of 
the registers are constant, the preamble and the source.  The label is output two bits at a 
time. 
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Figure 28  Architecture of the Label Generation Module 

Hence, the 26-bit label is output in 13 clock cycles.  The machine waits in state S1 for the 
start signal from the input enable state machine to be asserted.  Also in S1, the constant 
registers, preamble and source, are initialized. Once the start signal is asserted, the 8-bit 
preamble register is output in states S2, S11, S3, and S4. The LabelValid signal is 
asserted in state S11 to indicate the start of the label.  The label output is registered while 
the LabelValid signal is combinational.  Therefore, the first cycle the label appears is 
during state S11.  After the four clock cycles for the preamble, the 4-bit destination 
register is output. Next, the 2-bit priority register is sent, followed by the 4-bit ttl register, 
the 4-bit length register and finally the source register.  This completes the label.  In 
states S15 and S16 the label output is zeros; in states S17 and S18 the label output is 
ones.  These four bit-stuffing states are required by the hardware in the core router.  The 
state machine loops in these four states until the start signal is asserted.  It then proceeds 
to output the next label. Details of the output enable state machine were detailed in the 
UC Davis Subcontract Final Report. 
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In Figure 28, the last four units are logic blocks that compute the label output register 
values.  The blocks are as follows: 

• Priority Logic:  This block maps the 8-bit I_tos register to a 2-bit priority. 
• Length Logic:  This block maps the 16-bit I_length register and coverts it into a 4-

bit length. Datagrams are rarely greater than 1500 bytes.  For this reason a 
nonlinear mapping of the length bits will be used. For lengths less than 128 bytes 
the value 0001 is assigned to the length register so the length field is not zero for 
small packets.  

• TTL Logic:  This block converts the 8-bit I_ttl register into a 4-bit TTL.  
• Destination Logic:  The 32-bit I_dest register is mapped into a 4-bit destination 

address, that of the egress client interface. Ideally, the mapping would be done in 
a look-up-table updated by the network management and control. Currently, the 
last 4 bits of the IP address are being used.  

The above four logic blocks were implemented as separate code units so they could easily 
be changed without affecting other logic blocks.  

The framer FPGA was also modified for the label generation. As shown in Figure 25, 
eight serial registers were added to the label path to compensate for the delay the data 
payload experiences.  This is done so the label and data payload exit the UNAS at the 
same time.  

4.9.2.3 Framer Ingress Path Data Mux 

The ingress path in the framer FPGA (ingress client interface) contains a module that 
controls the data output as shown in Figure 25. The data is either HDLC preamble bits or 
the HDLC encapsulated IP packets.  Recall that HDLC preamble bits are required since 
there is no access to a 2.5Gbps burst mode receiver.  Therefore, at least 250 msec of extra 
preamble must be generated so the egress UNAS can recover the clock from the received 
data. Figure 29 shows the block diagram of this module. 
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Figure 29  Block Diagram of Framer Egress Path Data Mux 
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The module consists of three code units and a register. The Mux code unit accepts data 
and HDLC preamble bits at its inputs.  When the MuxControl line is low, data is sent to 
the Out lines. When MuxControl is high, the HDLC preamble byte, 01111110, is sent 
repetitively to the output. The output of the mux is fed into the scrambler code unit that 
performs the HDLC data scrambling.  The scrambler is the same parallel self-
synchronous X43 + 1 scrambler previously described. 

The state machine controlling the mux has the following inputs and outputs.  
• LabelValid:  Input signal from the PLPE label generation unit that indicates the 

first clock cycle of a valid label. 
• Delay:  16-bit input signal from the PCI registers.  This register contains the 

number of clock cycles during which HDLC preamble bits should be sent. 
• MuxControl:  Output signal that controls the mux.  When low, data is output.  

When high, HDLC preamble bits are output.  
• request:  Output signal going to the PLPE data pipeline (see Figure 25) to request 

data.  When high, data is being requested.  When low, no data is sent.  

The state machine assures that there is valid data requested from the PLPE and flowing 
through the mux to the output whenever there is a valid label to accompany the data. 
Between times when there is a valid label, a preset number of preamble bytes is sent. The 
length of preamble time is initialized before the preambles are needed. 

The PLPE FPGA was also modified for the data mux.  As shown in Figure 25, five 
request enabled registers were added to the output of the PLPE data pipeline.  The 
registers are an extension of the PLPE pipeline that are needed to meet timing 
requirements between the label generation unit and the data mux unit.  

3.2.3 Framer Egress Path 
At the egress client interface, the HDLC encapsulated IP packets are received. Since the 
UC Davis network is asynchronous, there is no knowledge of where byte boundaries 
occur when packets are received.  Therefore, a byte aligner is needed. The byte aligner 
takes the incoming HDLC frame and aligns it according to the preamble bits, 01111110. 
Figure 30 shows the block diagram of the framer egress path module. First, the data is 
descrambled by the self-synchronous X43 + 1 descrambler.  The data is then passed to the 
byte aligner unit.  The byte aligner unit aligns the input data to byte boundaries and 
outputs byte-aligned data, aligned_data[31:0] and a signal indicating when the aligned 
data is valid, valid_data.  The lock_det signal from the mezzanine board is an input to the 
byte aligner that indicates when the clock has been recovered from the data and there is a 
bit-lock on the data.  The pre_count register is an input from the PCI register block.  It 
designates how many preambles to detect before a byte alignment is chosen.  
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Figure 30.  Block Diagram of the Framer Egress Path 

The byte aligner has several code units. Detailed diagrams and explanations of signals 
and processes through this unit are available in the UC Davis Subcontract Final Report. 
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5 Results and Conclusions 

5.1 System Software and Real Time Operating System 
The software for the NGI program was divided into two separate tasks:  The Windows 
User Interface with Windows driver system and the VxWorks real time operating system.  
This design proved to be beneficial in several ways, with few issues.  The VxWorks 
portion could be compiled and updated independently of the Windows UI, allowing the 
hardware and firmware team to make changes rapidly.  Another benefit was that 
VxWorks code was developed before the first hardware cards were available, allowing 
testing of the first hardware prototypes within days of receiving them.  A drawback to 
this approach was keeping the system in sync. Since there is a common messaging thread 
to connect the VxWorks and the Windows UI,  any change in the overall feature set 
required the messaging system to be redefined.  Once the updated messaging system was 
redefined, all major components, including the VxWorks application, the NT driver, and 
the Windows UI, were recompiled to keep them in sync.  The system architecture proved 
to be robust and flexible, even with residual code management issues.  The NGI team 
would choose the same approach again. 

The remote UI worked very well: With initial testing, there were not any observable 
speed issues or connection problems.  The design of a Java remote UI interface 
uncovered some surprising issues, such as time to load and a crude appearance.  The team 
chose the Win32 approach - mainly because of the availability of several Windows PCs, 
allowing the team to solve multiple technical issues at once. 

The VxWorks “shell” connected to the Windows UI proved very useful.  The user did not 
have to connect a separate terminal to the NGI hardware to gain access to the VxWorks 
shell, as with other products using VxWorks.  In fact, it worked very well:  The hardware 
team preferred to use the shell for almost all hardware debug, rather than use the UI for 
setting up the instrument.  During the program, we discovered the need for using a 
“hardwired” terminal.  The VxWorks shell depends on everything in the system working 
correctly, from the Windows UI, Windows driver, VxWorks, and hardware since the 
VxWorks shell was displayed through the UI.  The NGI team developed an  RS232 
interface to allow testing of the VxWorks during the initialization stage, where the 
Windows system was not available.  This proved to be an important part of the program. 

The PPP negotiation software worked very well.  In testing of the PPP software, it was 
discovered there were differences between Cisco and Juniper OC48 routers.  The PPP 
negotiation worked exactly the same in the LCP portion of the negotiation, but differently 
in the IPCP portion of the negotiation.  The area where it worked differently was in the 
IPCP request for the IP address.  With a Cisco 12000 GSR and with an  Ixia test set, they 
responded with their IP address.  The Juniper router, however, would ignore status 
requests, and essentially loop forever:  making a request, waiting for a response, and not 
getting one, making a new request, etc.  This was fixed by modifying our software to wait 
a number of times for the response, as the NGI does not use this information.  However, 
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this is a customization that does not conform to the PPP standard. 

The auto negotiation for Gigabit Ethernet was very straight forward and was working 
within days of the first FPGA implementation.  It was easier to implement than the PPP 
negotiation and has been working flawlessly after a few FPGA turns. 

In conclusion, the Software Architecture taken was the right approach.  It was 
straightforward to partition the tasks, a solid and proven design, it met the needs of the 
program, and it satisfied the requirements of the hardware and software engineers on the 
program 

 

5.2 System testing and performance 

5.2.1 Testing of packet and video interfaces 

5.2.1.1 Single board testing 

Packet over SONET packet tests 
Initial testing of the UNAS was done with individual boards. Loopbacks were designed in 
the hardware at various points in the data flow to enable testing of individual 
components. For UNAE boards configured as OC-48 Packet-over-SONET, loopbacks 
were possible at the following locations: 1) at the serializer/deserializer chip on the 
optical mezzanine card, and 2) at the CPE interface to the hardware FIFOs (RFIFO and 
TFIFO). Internal error monitoring is done in both transmit and receive directions in the 
Framer (SONET diagnostics) and the PLPE (packet diagnostics). Packet testing was done 
to verify each board’s hardware operation, since the full 32-bit width of the data path is 
exercised. Sixteen UNAE boards were built, and fourteen of those were verified as 
having no errors during packet loopback testing. 

Gigabit Ethernet packet tests 

The results of the testing proved that the basic features of Gigabit Ethernet were 
successfully implemented, with some minor issue. The design has the ability to exchange 
IP packets at or near the theoretical maximum rate for a given packet size and inter-
packet gap rate. This means approximately 960Mbits of user (IP packets) traffic can be 
exchanged without any detectable corruption of the contents of the MAC frames. The 
Auto negotiation feature was also verified to perform the basic link negotiation tasks 
necessary to interoperate with like equipment. Both the ability to pass IP traffic and to 
Auto Negotiate were also verified with a Cisco router by passing uncompressed standard 
definition video signal in both directions. 

There are several limitations to the design as it stands. First, the design cannot talk to 
itself or run in a loopback (towards the backplane ) mode due to the limitations of the 
Crystal Oscillator used as a local clock source. The design must use the clock recovered 
from the line, thus acting as a slave to its peer interface. If configured to run in local time, 
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it will take running disparity errors and code group errors at the peer interface. Second, 
the statistics gathering that is presented on the GUI counts what appear to be false errors 
at a fairly low rate. These errors are shown as received code group, as well as packet 
length errors. These all appear to be false error reports, as they are never reflected in the 
data integrity. Finally there remains one issue with Receive PCS portion of the PMA-PCS 
FPGA: Occasionally, when the Auto Negotiation software changes the XMIT variable 
(which controls whether all idle codes, configuration messages or packets are 
transmitted), the design goes into a failure mode which the system reports as line rate 
FCS errors. 

No extensive network characterization, such as delay variation insertion, has been 
performed on this system. 

 

Video tests 

Similar loopback testing of UNAE boards configured as video boards was also done. The 
video configuration differs from the packet configuration in having a different mezzanine 
interface (SD or HD video) and different code in the Framer and PLPE FPGAs. For video 
boards, loopbacks are possible at the following locations: 1) in the Framer FPGA through 
an internal rate-matching FIFO, and 2) at the CPE interface to the hardware FIFOs. All 
boards verified by packet loopback testing were also verified by HD video loopback 
testing. 

5.2.1.2 Multiple board testing 

Video to POS/GbE 

Testing of packet transport across the backplane of the CPCI chassis can be accomplished 
by configuring a video card (Link card) in one slot, and configuring a second card as a 
POS or GbE (Phy card) in the next higher-numbered slot. When video transport (standard 
definition for GbE, either standard definition or high definition for OC-48 POS) is turned 
on in video card, packets containing video information are sent across the backplane to 
the Phy card. Configuring the CPE in the Phy card to “Loop” state will return the packets 
to the video card for decoding; this allows testing of CPCI backplane transport. 
Configuring the CPE in the Phy card to “Phy” will send the packets through the card and 
out the optics on the mezzanine in whichever physical layer format is selected. Packets 
can then be examined or monitored using a Gigabit Ethernet packet analyzer or a POS 
packet analyzer. 

Shown in Figure 31 below is an analysis of packet inter-arrival time for HD video 
packets captured by an Adtech AX4000 OC-48 packet analyzer. The difference between 
maximum and minimum inter-arrival time is 1.57 microseconds, indicating a very 
uniform packet flow. Shown for comparison purposes in Figure 32 is a constant rate 
packet flow generated by the packet analyzer for the same size packets and similar data 
rate; the spread in inter-arrival times for this flow is 2.10 microseconds. 
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Figure 31  Packet inter-arrival time variation for 1464-byte HD video packets generated by a Video 

UNAE and output as OC-48 POS by a POS UNAE. 

 

 
Figure 32  Packet inter-arrival time variation for 1464-byte POS packets generated at a constant 1.6 

Gb/s rate by an Adtech AX4000 packet tester 

Video packets exiting the Phy card optical port can also be looped back into the receive 
optical port using a fiber patch cord and sent back to the video card for decoding. In order 
for this to operate correctly, however, the transmit port on the Phy card mezzanine must 
be set to “local time” to use a locally generated clock. Otherwise the transmitter attempts 
to use the recovered receive clock (“loop time”), and frequency can drift substantially. 

Note: It was found that the clock oscillators (155.52 MHz for POS, 156.25 MHz for GbE) 
built onto the third revision of the optical mezzanine had too much jitter to operate 
without errors when the UNAS boards were used in the “local time” stand-alone mode as 
described above. Some of the new mezzanine boards had the POS clock oscillator 
replaced with a previous version of the oscillator with lower jitter. All of the mezzanines 
will operate correctly when connected to a router or switch and used in “loop time” 
mode. 

POS to GbE 

The UNAE cards can also be set up to act as a physical layer translator between to 
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protocols. Using two cards adjacent to each other in the CPCI chassis, the card in the 
lower-numbered slot is configured as Link and the card in the higher-numbered slot is 
configured as Phy. Packets received on the card configured as Link (an OC-48 POS card, 
for example) will be sent to the second card configured as Phy (a Gigabit Ethernet card, 
for example) and exit the transmit port as Gigabit Ethernet packets. Packets generated by 
a POS packet analyzer can then be captured by a Gigabit Ethernet packet analyzer and 
compared for errors. 

Error-free operation of POS to GbE and GbE to POS was verified using packets 
generated by a packet analyzer in one format and analyzed in the other format. 

Video to video (multiple chassis) 

Packets generated from video input using a Video/POS or Video/GbE card pair as 
described in the first section above can be routed to a second card pair of the same type 
using a length of optical fiber. Packets will be transmitted in whichever format is selected 
for the Phy port. This configuration is logically equivalent to the fiber-loopback 
described above, and is subject to the same constraint: the transmit clock must be set to 
“local_time”, since there is no receive clock to recover. Video transmission can be done 
through an arbitrary length of single-mode fiber, subject to the link power budget of the 
transmitter/receiver pair used (13 dB or approximately 30 km for the transceiver used on 
the UNAE optical mezzanine). 

Direct chassis-to-chassis connections were done for both standard definition video and 
high definition video in OC-48 POS packets. Both operated for extended periods (greater 
than 12 hours) with no errors. 

5.2.1.3 Testing through router ports 

POS to POS 

Pairs of UNAE cards configured as described above in multiple card testing (Video/POS) 
can be used to inject packets at one router port and remove them through another. Testing 
was done for HD video in packets between two OC-48 POS router ports on a Cisco GSR 
12008 router. PPP negotiation between the UNAS and the router established the IP 
address associated with each port. 

Shown in Figure 33 below is a histogram of packet inter-arrival time for HD video POS 
packets generated by the UNAS (Video/POS board pair), input to a Cisco router OC-48 
POS port, and routed to a second OC-48 POS port for output. The difference between 
maximum and minimum packet inter-arrival time is 5.40 microseconds, indicating that 
the router alters the distribution of packet arrival times. The change in inter-arrival time is 
minimal for a single router with no congestion, but can become a problem with many 
routers in a congested network (see section 5.3). 
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Figure 33  Packet inter-arrival time variation for 1464-byte HD video in POS packets generated by 

the UNAS and routed between Cisco GSR OC-48 POS ports. 

GbE to POS 

Video packets can also be injected into a GbE router port (for standard definition video 
only; the data rate of uncompressed HD video at 1.5 Gb/s is too high for GbE) and 
recovered from a POS router port, or vice versa. Lengthy tests were run of standard 
definition video routed between GbE and OC-48 POS ports on a Cisco GSR 12008 router 
with no errors. Packet inter-arrival time measurements were also made for standard 
definition video packets that entered the router through a GbE port and exited through an 
OC-48 POS port. The average inter-arrival time was 15.25 microseconds, but the 
difference between maximum and minimum times was more than 140 microseconds due 
to a small number of large gaps. 
 

 
Figure 34  Packet inter-arrival time variation for 564-byte SD video in IP packets generated by the 

UNAS and routed between Cisco GSR GbE and OC-48 POS ports. 

5.2.2 Wide area network experiments 

5.2.2.1 University of Washington (Seattle) to ISI East (Wash., D.C.) 

Initial testing of uncompressed high definition video transport over a wide area packet 
network was done over a link between the University of Washington in Seattle and the 
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University of Southern California Information Sciences Institute in Washington, D.C. 
Testing over the wide area network began on 11/1/2001 using the Abilene network 
(Figure 35). Initial testing was done using a route through Denver with 11 router hops 
(Seattle to Denver to Kansas City to Indianapolis to Cleveland to New York to 
Washington, D.C., with multiple routers in the start and end cities). 

 

 

 

 
Figure 35  Network utilization during testing of HD video transport over the Abilene OC-48 Packet-

over-SONET network. 

The first tests used a default packet size of 564 bytes, and several thousand packet 
sequence errors per second were observed (out of a total packet rate of 355,438 
packets/second). Video was observed on test monitors in Washington, D.C., but there 
were many glitches in the picture. By increasing the packet size used to carry video (and 
thereby decreasing the packet transmission rate), it was possible to obtain error-free video 
over the northern route shown in Figure n. Measurements of the distribution of sequence 
number errors were made and are reported in Table 6. 
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Table 6 Sequence errors for different sizes of packets transporting HD video over the Abilene 
network from Seattle to Washington, D.C. via New York on Nov. 6, 2001. 

 
Rates of occurrence of sequence number differences (sec-1) 

Sequence number 
difference 564-byte packets 

(355,438 pkts/sec) 

1464-byte packets 

(130,159 pkts/sec) 

4444-byte packets 

(42,006 pkts/sec) 

≥ +5 68 0 0 

+4 18 0 0 

+3 451 0 0 

+2 1,393 0 0 

+1 352,353 130,159 42,006 

0 0 0 0 

-1 923 0 0 

-2 158 0 0 

-3 74 0 0 

 

 

Additional testing was done over other wide area network segments. A second route 
tested was using the Abilene network from Seattle to Denver to Sunnyvale to Los 
Angeles, then the HSCC network over Qwest fiber from Los Angeles to Washington, 
D.C. The video data stream showed a loss of 12,866 packets/sec., 36% of the original 
data rate of 355,432 packets/sec. No video pictures were visible on test monitors with this 
loss rate. 

The route above was modified slightly to avoid a congested link; the HSCC part of the 
network was routed through Atlanta. The received packet rates now showed that no 
packets were being dropped, but there were still substantial numbers of out-of-order 
packets observed even at the largest packet sizes used (Table 7).  
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Table 7  Sequence errors for different sizes of packets transporting HD video over the HSCC 

network between Seattle and Washington, D.C. via Atlanta on Nov. 8, 2001 

Rates of occurrence of sequence number differences (sec-1) 
Sequence number 
difference 564-byte packets 

(355,438 pkts/sec) 

1464-byte packets 

(130,161 pkts/sec) 

4444-byte packets 

(42,007 pkts/sec) 

≥ +5 28,448 ? 1 

+4 12,692 ? 4 

+3 24,947 ? 8 

+2 55,310 ? 94 

+1 165,990 113,457 41,844 

0 0 ? 0 

-1 37,539 ? 45 

-2 20,218 ? 8 

-3 10,294 ? 3 

 

 

The best explanation we currently have for the mis-ordering of packets through the 
network is that under certain condtions (high packet rates and high loading) the core 
network routers can change the ordering of packets because there are multiple paths 
through the routing fabric. When the time available to route packets is small (high packet 
rates) small delays in one of the paths can result in a change in the order of the packets. 
This effect was readily observable at the packet rates used for transport of uncompressed 
high definition video, but could be worked around in some cases by going to sufficiently 
large packets (sufficiently small packet rates). 

 

5.2.2.2 Univ. of Washington (Seattle) to SC2001 (Denver) 

The SC2001 Conference in Denver provided another opportunity for testing high speed 
data transport across a wide area network. A network was set up between the University 
of Washington in Seattle and the National Coordination Office for Information 
Technology Research and Development (NCO/ITR&D booth) on the SC2001 
Conference show floor in Denver. A Level3 Packet-over-SONET network was used. 
There were at least three routers in the network: a Juniper M20 router in Seattle, a Juniper 
M160 router at the entrance to the SC2001 show floor, and a Juniper M20 router at the 
booth. The network path was unspecified, but probably went through northern California 
and several SONET repeaters and add/drop muxes. 

 126 



 

Error-free uncompressed high definition video transport in IP/UDP/RTP packets was 
easily obtained. Even at a packet size of 564 bytes (355,435 pkts/sec stream) only a few 
mis-ordered packets were observed (Table 8). The pattern of sequence number 
differences for a packet size of 564 bytes show that the mis-ordering events are single 
packets skipped and then re-inserted one packet later; one out-of-order packet would 
produce three sequence number errors of +2, -1, +2 for this event which is what is 
observed. 

Significant mis-ordering of packets was not seen on this network until the packet size was 
reduced to 244 bytes (924,145 pkts/sec stream). Even at this packet rate, an analysis of 
the pattern of sequence errors shows that approximately 99.5% of the mis-ordering events 
are single packets out of order by one place.  

Subsequent to this test the capability to correct for single out-of-order packet events was 
added to the UNAS (see section 4.11.5). It has not been possible to test this capability in 
transmission experiments on a wide area network. 

 

 
Table 8  Sequence errors for different sizes of packets transporting HD video over a Level3 Network 

between Seattle and Denver on Nov. 13, 2001. 

 
Rates of occurrence of sequence number differences (sec-1) 

Sequence number 
difference 244-byte packets 

(924,145 pkts/sec) 

564-byte packets 

(355,435 pkts/sec) 

1464-byte packets 

(130,161 pkts/sec) 

4444-byte packets 

(42,007 pkts/sec) 

≥ +5 0 0 0 0 

+4 0 0 0 0 

+3 37 0 0 0 

+2 8,802 2 0 0 

+1 910,879 355,432 130,161 42,007 

0 0 0 0 0 

-1 4,405 1 0 0 

-2 22 0 0 0 

-3 0 0 0 0 

 

5.3 Results , experiments and conclusions for UNAS/OLSR interface experiments 
All elements developed for the OLSR interface were shown to be functional. Although 
longer than expected preambles were required to get low jitter eye diagrams at 2.5Gbps, 
each element performed its function as designed. The system was tested out in the 
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proposed application, that of connecting a packet over SONET source with an all optical 
packet switched network using subcarrier multiplexing techniques to apply labels for 
directing the router’s port mapping. The labels were first generated in the UNAS from 
information in IP packet headers. 

Figure 36 shows the configuration of the UNAS for the experiments.  Since there is only 
one UNAS mainframe at UC Davis, two client interfaces share the same mainframe. The 
ingress client interface receives POS traffic from the IXIA traffic generator.  It then 
outputs the data payload and optical label to the OLSN. The egress client interface 
receives the data payload from the OLSN and converts it back into POS frames.  The 
frames are then sent back to the IXIA traffic generator for analysis.  
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Figure 36  UNAS Configuration for Experiments 

After the UNAS outputs the data payload and label, it enters the subcarrier-multiplexing 
transmitter.  Figure 37 shows the details of the subcarrier-multiplexing transmitter (SCM 
TX) and voltage level adjustments. The SCM module and core OLSR had already been  
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Figure 37 The detail of the SCM TX , (LO; local oscillator, LPF; Low-pass filter, AMP; Amplifier, 

BPF; Band-pass filter, Mod; Modulator)developed by UC Davis outside of this program.  

The transmitter modulates the original label at 155 Mb/s on a 14 GHz carrier frequency 
subcarrier multiplexed with the baseband data payload packet at 2.5 Gb/s. The modulated 
signal will then include double-side-band subcarrier header appearing 14 GHz away from 
the center optical frequency. 

Figure 38 shows the eye diagram of the electrical data payload from the UNAS. The bit 
rate of the data payload is 2.5 Gb/s. Figure 39 shows the bits of the label from the UNAS. 
The bit rate of the label is 155 Mb/s. These two figures show the UNAE as modified by 
UC Davis provides the data and labels to the input of the SCM transmitter. The SCM TX 
generates the optical packets containing the optical label (compressed header 
information) and payload, using double side-band sub-carrier multiplexing (SCM). 

5.3.1 Optical Label Switching with UNAS 
Figure 40 shows a functional block diagram of the experimental system, which represents 
the core of an Optical Label Switching (OLS) Router. It consists of an optical-SCM Tx, 
an optical-label/data separator, a label detector, a forwarding table, a switch controller, a 
tunable wavelength converter including a tunable laser (TL) and a Mach Zehnder 
Interferometer (MZI) semiconductor optical amplifier (SOA), a uniform-loss-cyclic 
frequency (ULCF) AWGR, and receivers. The optical-label/data separator consists of an 
optical circulator (OC1) and a Fiber Bragg Grating (FBG) with its peak reflectivity 
centered at the same optical frequency. The Burst Mode Receiver (BM Rx) receives the 
header signal and sends it to the Field Programmable Gate Array (FPGA), which is the 
core router control logic. According to the header content, the FPGA sends control 
signals to the TL driver to switch the wavelength. The TL output reaches the MZI 
Wavelength Converter (WC) and converts the payload signal onto the desired wavelength 
by cross-phase modulation. Payloads with different headers will be converted onto 
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different wavelengths. Thus they will go to different output ports of the AWGR. In this 
experiment packets with two different labels are transmitted. For simplicity, the two 
labels are alternating as L1 L2 L1 L2…  Packets with one type of label will be dropped, 
while those with the other type will be received and sent back to the UNAS. In the 
experiment both situations were tested:  L1 is dropped; or L2 is dropped. The Client 
Interface consists of the elements shown in Figure 36 and Figure 38, shaded for clarity.  
 

 

Figure 38.  Eye diagram of the data payload from the UNAS (100 ps/div) 
 

 

Figure 39.  Bit trains of the label from UNAS (20 ns/div) 
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Figure 40  Experiment setup for optical label switching with UNAS, (BPF : band-pass filter, BM Rx; 
Burst Mode receiver, AWGR; Arrayed waveguide grating router, FBG; Fiber Bragg Grating, TL; 

Tunable Laser, MZI WC; Mach Zehnder Interferometer Wavelength Converter, L 

The eye diagrams of the received signals following the optical router (OLSR) were 
measured.  Figure 41 shows the eye diagram of the output signal when the tunable laser 
stays at 1552 nm.  Figure 41(a) shows the eye diagram of the optical signal and (b) shows 
the eye diagram of the output signal after being received and amplified by an electrical 
limiting amplifier.  Figure 42 shows the eye diagram of the final output at 1552 nm while 
the tunable laser is switching between 1546nm and 1552nm. It shows a lot of dots in the 
eye. The bits at the beginning are stuffing bits, while the bits after a transient period are 
clear, so the distortion does not introduce packet error (this is not obvious from the eye 
diagram).  Figure 42(a) shows the eye diagram of the optical signal at 1552 nm while the 
tunable laser is switching between 1546nm and 1552nm, and (b) shows the eye diagram 
of the output signal after amplified by an AC-coupled electrical limiting amplifier. 

 



 

      
   (a)      (b) 

Figure 41  Eye diagram of the output signal when the label stays at 1552 nm (a) optical eye diagram 
(b) electrical eye diagram after amplified by an AC-coupled electrical limiting amplifier. (100 ps/div) 

 

      
   (a)      (b) 

Figure 42  Eye diagram of the final output at 1552 nm switching between 1546nm and 1552nm (a) 
optical eye diagram, (b) electrical eye diagram after amplified by an AC-coupled electrical limiting 

amplifier. (100 ps/div) (Dots inside the eyes arise from the distort 

 

The stream of test packets were derived from an IXIA packet generator. The IXIA 
allowed the logging of packet loss rate. The PLPE FPGA on the UNAS was used to 
gather packet error rates. Because half the packets are dropped by the OLSR (labels are 
alternating as L1 L2 L1 L2…) as described above, half of the total packets should arrive at 
the IXIA to be counted.  When 1546nm packets are sent back, among 1,053,625 packets 
sent we receive 526,810 without any error. Thus the packet loss rate is 4.75 per million, 
the packet error rate is 0. When 1552nm packets are sent back, among 1,047,841 packets 
sent we receive 523,657 with 12 packet errors. Thus the packet loss rate is 0.050%, the 
packet error rate is 22.9 per million. These rates show that the UNAS-OLSR combination 
can work together with a very good performance. 
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This experiment was performed with just a few meters of fiber between the OLSR and 
the photodetector. Another experiment was run with 50km of fiber inserted between the 
Mach-Zender Interferometer AWGR wavelength router element. The above experiment 
was repeated, sourcing packets from the IXIA through the UNAE and OLSR setup shown 
in Figure 40, but with an additional 50km of single mode fiber insaerted between MZI-
WC and EDFA3. Under these conditions, when 1552nm packets are sent back, among 
1,518,966 packets sent we receive 758,884 with 84 packet errors. Thus the packet loss 
rate is 0.079%, the packet error rate is 0.011%. These rates show that the UNAS-OLSR 
combination with 50 km fiber transmission can work together with a very good 
performance. 
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6 Concluding Remarks 
Prior to the Universal Network Access System project, much effort had been focused at 
addressing very high bandwidth network pathways and switching. Less progress had been 
made on technologies needed to provide transparent, service-independent, high 
bandwidth network access. The scope of this program is to provide the capability for 
flexibly interconnecting a wide range of broadband information sources and local area 
networks over the Next Generation Internet (NGI). The primary objective has been to 
develop the architecture, components, and a prototype system to demonstrate a Universal 
Network Access Engine. The engine architecture will enable reconfigurable network 
monitoring and network edge devices, which can flexibly interconnect broadband 
information sources and appliances over the NGI. The technology developed provides the 
groundwork for rapidly deployable and reconfigurable networks, interconnection of 
dissimilar network types, development and testing of new protocols, packet label or tag 
generation, network monitoring and quality of service (QoS) testing, and new approaches 
to data security.  

6.1 Architecture 
This program undertook to research architectures and methodologies needed to provide a 
highly flexible approach to realizing network access and payload processing elements. 
An architecture was developed that would accommodate common elements of protocols 
in significant commercial use, yet would provide the flexibility to allow development and 
testing of customized and proprietary protocols.  

The strategy was to combine elements supporting bit-rate adaptability and protocol 
reconfigurability into a system architecture that would allow building a variety of 
network access adaptors and interfaces. Three functional blocks that were developed 
were a bit-rate agile DeMux/Mux, a Physical Layer Protocol Engine and a Cell/Packet 
Engine. The Physical Layer Protocol Engine provides a flexible means of handling 
physical layer and transport functions including termination of physical links, 
scrambling/descrambling, bit and Byte alignment and framing and recovery of packetized 
or formatted data. The Cell/Packet Engine does processing at the packet or cell level, 
dealing with verifying integrity of data payloads, timing synchronization between user 
and network clock domains, and processing of user data. This is not only a flexible key to 
interfacing between user data and the network, but it provides powerful support for 
determining quality of service. The bit rate agile element was not fully implemented, 
although the design was thoroughly investigated and substantially completed. 

A combination of dedicated integrated circuits and high performance programmable logic 
were chosen to comprise the engines. Design and development tools were surveyed and 
selected. The program required balancing the ease of use of tools with higher levels of 
abstraction and design automation, against the high performance demanded of the engine 
elements for high bandwidth protocol processing. After a survey of products and 
approaches, including several interviews and product demonstrations, Protocol Compiler 
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and VERA from Synopsys were selected for higher level logic design and verification 
tools, respectively.  The Protocol Compiler designs, although more quickly realized, took 
significant added design time to optimize for performance and to debug, since the 
abstraction was forced on the designer. In contrast, Verilog took longer for initial design; 
but the design approach allowed more direct control of performance, showing that for 
these very high performance designs, the Verilog is superior to Protocol Compiler. 

The architecture combining the proposed elements was completed; and a series of card-
level Universal Network Access Engines developed. These share common hardware and 
are reconfigured through software commands and a VxWorks embedded operating 
system. A set of mezzanine cards was developed to meet the requirement of attaching to 
various physical media. Each attaches simply to a motherboard to form a UNAE element. 

These engines were integrated into a simple, multiple card system architecture, which 
leads to several advantages: By reconfiguring in approximately one second under 
software control they provide the ability to rapidly and inexpensively deploy edge 
elements for a variety of networks using a base set of hardware. They lay the groundwork 
for the development and testing of new protocols where appropriate. Work in 
collaboration with the University of California (UC) at Davis to develop a custom 
gateway protocol to an all optical routed network showed the flexibility of the UNAS 
architecture. This collaboration included development of a label-filtering protocol, where 
a custom label was created from IP header information and sent in a reduced bit rate 
stream to an optical label processor to generate optical subcarrier multiplexed labels for 
an all-optical packet routing switch.  

Engines also provide flexibility in providing scalable network access for a variety of 
different services and data sources. This was demonstrated by providing interfaces from 
both standard definition (SD) and high definition (HD) digital video sources and two 
common types of packet based, high bandwidth transport networks (Gigabit Ethernet and 
OC-48 Packet over SONET). 

6.2 BRAD ASIC 
The approach of using a mezzanine board for physical media attachment and the 
serialization/deserialization and clocking functions was very powerful. A key element of 
the mezzanine was to be the bit-rate adaptive DeMux/Mux (BRAD), which would 
provide bit-rate agile transmitter and receiver clock circuits from 150Mbps to 3 Gbps, 
burst mode capture, and variable parallel word widths on the deserialized side. A CMOS 
feasibility study based on available processes and models suggested that the risk would 
be too high in CMOS. A BRAD design based on the IBM 5HP SiGe process was 
developed and simulated. This design was discontinued due to resource issues. In its 
place a commercial clock and data recovery and DeMux/Mux chip was successfully 
designed into the mezzanine. All testing was done with the commercial chip. Without the 
BRAD, video interface mezzanines also needed custom chips to handle the video signals. 
This led to successful implementations that required separate optical network-, SD video- 
and HD video-mezzanines.  
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6.3 Results 
Interfaces and protocol- or format-processing engines were successfully realized and 
tested for OC-48 Packet over SONET (POS), Gigabit Ethernet, HD video and SD video. 
That these can all run on the same card with only a few-second SW configuration show 
the strength of the architecture and approach using programmable engine cards with 
physical layer mezzanines. In combination, these cards also showed the ability to 
accommodate generally formatted user data, the ability to quickly select and transmit 
from a library of protocols, the ability to function at several different data rates (bit-rate 
adaptability) and the ability to translate between different formats or protocols including 
SONET to/from Gigabit Ethernet, video mapped to/extracted from SONET or Gb 
Ethernet. Packet and network diagnostics were also demonstrated, through reporting of 
SONET alarms and link status indications but also through packet and payload 
diagnostics within processing elements in the UNAE itself. 

The system was used to communicate directly with other attached network elements over 
a wide area network, talk to routers through PPP/LCP for Packet over SONET and auto 
negotiate for Gigabit Ethernet. The packet filtering and negotiation for this was handled 
autonomously on the UNAE card under control of its embedded operating system. The 
system fully negotiates for link connection with commercial test equipment such as IXIA 
and Adtech packet testers. 

The ability to set up links with other network elements and UNAE multiprotocol 
mapping were combined to demonstrate for the first time the transport of uncompressed 
(SMPTE 292) HD video data at 1.5Gbps over a wide area IP packet based network. This 
was demonstrated on several occasions from Seattle to Denver and to Washington DC 
over the Internet2 backbone, with diagnostics for dropped and reordered packets obtained 
continuously for up to 18 hours at a time. Besides showing for the first time that this 
could be done, this provided unprecedented validation that routers on the network could 
handle extremely large, single flows of real time traffic such as these. 

Several types of link and network diagnostics were performed in real time on the packets 
as they streamed through the engine cards. Packet ordering errors, dropped packets and 
some level of packet inter-arrival time jitter were extracted and reported to the user. This 
is just the first step in addressing quality of service measurements in IP networks with the 
UNAS approach. 

A final example of protocol flexible performance using the UNAS is the collaborative 
development with University of California at Davis of a gateway interface between an 
OC-48 POS network and the Client Interface for an Optical Label Switched Router 
(OLSR). IP packets were extracted from the OC-48 stream, the packet header information 
was used to generate a label that instructs the OLSR how to switch that packet, and the 
label and original packet data are forwarded to an optical label generation module. 
Customization of the stream such as encapsulation using HDLC for data scrambling and 
appending a preamble are also programmed into the data processing in the UNAE path. 
The UNAS also receives optical data from the Optical Label Switched Network and 
recovers the packets and data. This is another unprecedented demonstration, that of a 
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completely custom and extendable interface between a conventional POS network and an 
Optical Label Switched Network. The architecture of the UNAE can be extended with the 
OLSR to other advanced developments such as generation of jumbo packets in 
concatenated streams. 

6.4 Issues 
The program did have some setbacks, including the decision not to complete the BRAD 
within the program. This chip would have been one of the first burst mode receivers to 
run at 2.5Gbps. This would have eliminated the need for the cumbersome preambles in 
the OLSR client interface. The BRAD would allow a single mezzanine board to be used 
for all the protocols and formats addressed in the program, using a multiplexor selector 
between a fiber and coax (video) inputs.  

One of the biggest design challenges was to simultaneously accommodate several clocks 
(not multiples of each other) such as SONET and Gigabit Ethernet. Having the BRAD 
would have addressed this most effectively. However, in the implementation without the 
BRAD, the performance was limited by the components used. Failure for the vendor to 
successfully build oscillators within spec after our mezzanine redesign limited use of the 
system to run in “loop-time” (deriving the transmit clock from the received clock) rather 
than “local-time”, where an on-board oscillator provides it. This did not impact any of the 
demonstrations of features but limits the applications unless a suitable oscillator is added. 

Use of Protocol Compiler tool was considered to have added some time to the full design 
task, since the performance demanded of the programmable logic by this program 
required careful redesign of each module within Protocol Compiler to assure consistent 
performance in the integrated designs. 

6.5 Summary 
The intent of the research has been successfully carried out. A multirate and 
multiprotocol system, based on software configurable, hardware accelerated processing 
engines has provided a series of system demonstrations that show the power and 
flexibility of the concept, architecture, and system approach. There are still areas where 
additional work would be of interest: 

Successful implementation of each of the protocols in Table 1 was completed with the 
exception of ATM over SONET and lower rate SONET transport. It was deemed by 
DARPA representative Mari Maeda a higher priority to implement the two digital video 
formats and adaptation of those to Packet over SONET, in order to demonstrate high 
performance multimedia transport on IP networks (something which hadn’t been 
successfully done at the levels achieved here). Extension of the UNAS engines to 
accommodate the lower rates would extend the application of the system somewhat, 
although the cost of doing so may not warrant the effort. SONET OC-12 and -OC3 are in 
commonplace use at this time. 

Completion of the BRAD would be interesting to validate the design and provide a single 
mezzanine-level front end for the variety of protocols of interest. Its performance as a 
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burst receiver capable of 2.5Gbps could be of significant value until a commercial chip 
with such capability is available. However, the BRAD is limited to applications that can 
tolerate 0.25 IU of jitter, since the basic design only uses a four phase clock. 

Work on the IP to Optical Label Switched Router network gateway could be extended, 
since only the simplest adaptation has been demonstrated. Creation of jumbo IP packets 
and integration of Network Management and Control functions would be useful in 
continuing development of OLSR based technology. There are no major issues in 
realizing these capabilities in the UNAS architecture. 

The demonstration of transport and full recovery of very high bit rate (1.5Gbps) digital 
video data over wide area networks using Packet over SONET demonstrates the concept 
of real time transport of high bandwidth serial data over IP networks. This could be 
extended to include some level of error concealment or error recovery. No work was 
done using techniques such as forward error correction or packet replacement, although 
packet order error correction has been demonstrated. 
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7 List of Symbols, Abbreviations, and Acronyms 

Abbreviation 
or Acronyms 

Description 

AIS  

ARP Address Resolution Protocol 

CAIDA  

CDR  

CPE Cell Packet Engine 

CRC-32 or 
CRC-16 

Cyclic Redundancy Check, 32 bit or 16 bits, 
respectively 

DA Destination Address 

DCM Digital Clock Manager in Xilinx FPGA 

EOP End Of Packet 

FCS Frame Check Sequence 

FIFO  First In First Out memory 

FPGA  Field Programmable Gate Array  

GbE  Gigabit Ethernet 

GbEI  Gigabit Ethernet Interface - Refers to the GbE 
implementation on UNAE Hardware 

GMII Gigabit Media Independent Interface 

HDLC High Data Layer  

IETF Internet Engineering Task Force 

IPG  Inter-Packet Gap 

LSB Least significant bit 

MAC  Media Access Control 
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MSB Most significant bit 

NGI  Next Generation Internet 

NTON II National Transparent Optical Network testbed 

OIF Optical Internetworking Forum 

PCS  Physical Coding Sublayer 

PHY  Physical Interface 

PMA  Physical Medium Attachment 

PMD  Physical Medium Dependant 

POS  Packet Over SONET 

POS-PHY Parallel physical layer bus proposed by SATURN 
users group to accommodate POS data on the user 
side. POS-PHY level3 continuously handles data 
payloads at OC-48 data rates. 

RTP Real Time Protocol – part of UDP/IP stack 

SA  Source Address 

SERDES Serialization and deserialization function. Fully equivalent 
to mux/demux 

mux/demux – Multiplex and demultiplex 
function. 

SFD  Start Frame Delimiter 

SMPTE Society of Motion Picture and Television 
Engineers 

SOP  Start Of Packet 

SPE Synchronous Payload Envelope (typically 
SONET) 

UDP User Datagram Protocol – part of UDP/IP 
stack 

UNAE  Universal Network Access Engine 

UNAS  Universal Network Access System 
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8 Index 

10B/8B decoder, 105 

259M Video packet assembly, 86 

292M Video packet assembly, 85 

8B/10B encoded, 103 

8B/10B encoding, 61 

Abilene network, 126 

access engine, 6 

Adtech, 29 

AIS, 142 

ARP, 142 

ATM, 6 

Auto negotiation, 105 

hardware, 106 

software, 106 

B1, B2 errors, 15 

Backplane bus interface, 68 

Bit rate agile, 49 

Bit-rate Adaptive Demux/Mux, 8 

BRAD, 8, 49 

Burst mode, 49 

byte aligner, 119 

Byte stuffing, 79 

Cadence BONeS, 22 

CAIDA, 30, 142 

CDR, 142 

Cell/Packet Engine, 7 

checksum, 86 

CHILL program, 30 

clock and data recovery, 53 

clock distribution, 96 

Clock distribution, 107 

clock phase select circuit, 55 

clock synthesis, 59 

CMOS feasibility study, 50 

CPE, 20, 74, 142 

CPE FPGA, 67, 99 

CPE image, 36 

CRC errors, 15 

CRC-16, 82 

CRC-32, 82, 142 

Crystal Oscillator, 121 

DA, 142 

data path clocks, 61 

Data scrambling, 79 

DCM, 142 

Descrambling, 80 

Direct Digital Synthesizer, 72 

egress client interface, 118 

EOP, 142 

Error-free operation, 124 

eye diagram, 133 

eye diagrams, 129 

FCS, 96, 142 

FIFO, 20, 26, 70, 86, 94, 99, 104, 142 

filter, 30 

FLASH memory, 9 

FPGA, 12, 142 

FPGA images, 35 
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Frame Check Sequence, 79, 81 

Frame delineation, 80 

Framer, 74 

Framer FPGA, 66, 76, 111 

gateway, 8 

GbE, 142 

GbEI, 142 

Gigabit Ethernet, 13, 14, 61, 90 

testing approach, 108 

Gigabit Ethernet Auto Negotiation, 37 

Gigabit Ethernet MAC frame, 95 

Gigabit Ethernet PMA-PCS FPGA 
design hierarchy, 100 

Gigabit Ethernet user data 
encapsulation, 94 

Gigabit Media Independent Interface, 90 

GMII, 90, 96, 142 

GPS, 26 

GPS Timing Reference, 72 

GSR12000 router, 29 

HD video, 30 

HD video loopback testing, 122 

HD video mezzanines, 62 

HD video packets, 122 

HDLC, 13, 14, 110, 142 

HDLC data scrambling, 118 

HDLC encapsulation, 39 

HDLC preamble byte, 118 

HDL-level, 23 

HDTV, 6, 30 

HSCC network, 127 

i960RD interface processor, 65 

identity discovery mechanism, 65 

IEEE 802.3ae, 13 

IETF, 142 

IETF draft, 30 

ingress client interface, 110, 117 

Internet Protocol Control Protocol 
(IPCP), 41 

interrupt handler, 33 

IP, 6 

IP/UDP/RTP, 83, 128 

IPG, 142 

ISI East, 30, 83, 125 

IXIA, 29 

jitter, 123, 129 

label generation module, 115 

Label Generation Module, 113 

Link Control Protocol, 39 

Link Control Protocol State 
MachineTable, 40 

Link layer interface, 69 

local time, 123 

loop time, 123 

loopback, 109 

Loop-back, 57 

loopback testing, 121 

LSB, 142 

MAC, 90, 142 

MAC FPGA, 96 

MAC Framer, 92 

Media Access Control, 90 
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messages, 32 

messaging system, 34 

mezzanine, 19 

mezzanine FPGA, 38 

microprocessor interface, 99 

Microprocessor Interface, 107 

mis-ordering of packets, 128 

MSB, 142 

Multiple board testing, 122 

NCO ITR&D, 30 

NCO/ITR&D booth, 128 

negative sequence number, 89 

NGI, 143 

NT Device Driver, 34 

NTON II, 29, 143 

Object GEODE, 22 

OIF, 143 

OLSR, 112 

Opnet Mil3, 22 

Optical Label Switched Router, 31 

Optical Label Switching, 131 

optical label switching network, 109 

optical mezzanine, 58 

Optical Router Client, 111 

P1/P3/P5 back plane connectors, 63 

Packet Formatter, 37 

packet inter-arrival time, 88, 122, 124 

packet loss rate, 134 

packet sequence errors, 126 

packet sequence number, 87 

Packet sequence number, 86 

Packet State Machine, 37 

packet transport, 122 

packetized video, 83 

Packet-over-SONET, 77 

Pause control, 106 

PCS, 90, 102, 143 

PHY, 143 

PHY layer interface, 69 

Physical Coding Sublayer, 90 

Physical Coding Sub-layer, 102 

Physical Layer Protocol Engine, 7 

physical layer translator, 123 

Physical Medium Attachment, 90, 103 

platform, 12 

Platinum, 20, 68 

PLPE, 20, 74, 111 

PLPE Buffer, 36 

PLPE FPGA, 67 

PMA, 90, 103, 143 

PMA FPGA, 60 

PMA-PCS FPGA, 96, 102, 106 

PMD, 143 

POS, 143 

POS/PHY-3, 20 

POS-PHY, 143 

PPP, 13, 14, 15 

PPP negotiation, 36, 82, 124 

PPP Negotiation, 41 

PPP/HDLC, 78 

Preamble, 114 

preamble bytes, 111 
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preambles, 129 

Protocol Compiler, 25, 77 

Protocol processing engine, 20 

QoS, 15, 18, 30 

quality of service, 15 

Quartus, 27 

remote client, 44 

remote user interface, 43 

router ports, 124 

RTOS, 18 

RTP, 143 

RTP header, 84 

RTP timestamp, 84 

RTP/UDP/IP, 30 

SA, 143 

SC2001, 30 

SC2001 Conference, 128 

SD video mezzanines, 62 

sequence errors, 89 

sequence number checking, 83 

SERDES, 9, 143 

serialization/deserialization, 9 

Setup page, 43 

SFD, 143 

Silicon-Germanium, 51 

Simulation, 27 

SMPTE, 143 

SMPTE 259, 13 

SMPTE 259M, 83 

SMPTE 292, 13 

SMPTE 292M, 30, 83 

Software Architecture, 20 

software build environment, 46 

SONET, 6, 14 

SONET framer, 76 

SOP, 143 

SPE, 143 

SPI-3, 63, 69 

Subcontract, 31 

Synchronous Payload Envelope, 76 

Synplify, 24 

System Boot, 33 

system shut down, 42 

TAG field, 70 

TAG value, 94 

test bench, 77, 91 

test benches, 27 

testing, 121 

timestamp, 82 

time-to-live field, 114 

transition counter, 50, 57 

tunable laser, 133 

UC Davis, 31 

UC Davis UNAE, 110 

UDP, 143 

UNAE, 17, 143 

UNAE Boot, 33 

UNAE card icons, 43 

UNAE data path architecture, 19 

UNAS, 7, 143 

uncompressed HD video, 125 

Universal Network Access Engine, 16, 
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63 

Universal Network Access Engines, 8 

Universal Network Access System, 8, 12 

University of Washington, 30, 125 

User Interface, 16, 33, 42 

UTOPIA-3, 63 

VCO, 51 

VERA, 25, 77 

verification, 91 

Verilog HDL, 24, 25 

Verilog model, 91 

Verilog XL, 25 

video data, 83 

video mezzanine, 59 

Video PLPE, 83 

video timing, 89 

video transport, 122, 125 

VxWorks, 20, 21, 33 

VxWorks build environment, 111 

VxWorks core operating system, 46 

VxWorks Loader Image, 47 

VxWorks shell, 35 

Windows NT, 16, 32 
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